انتقال بار بستر تحت رژیم پرش رسوبات در جریان آشفته بخش دوم: تحلیل حساسیت پارامترهای مهم مدل

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 دکتری مهندسی عمران، دانشگاه تربیت مدرس

2 استاد دانشکده عمران و محیط‌زیست و پژوهشکده مهندسی آب، دانشگاه ترییت مدرس

3 استاد دانشکده مهندسی مکانیک و هوانوردی، دانشگاه کلارکسون

چکیده

در این پژوهش، مدل سه­ بعدی اویلری-لاگرانژی انتقال رسوب توسعه داده ‌شده در بخش اول این سری مقالات، به‌ منظور پیش­بینی اثرات زبری بستر کانال، دمای آب (اثر لزجت) و چگالی دانه­ های رسوب مورد مطالعه قرار گرفته است. پارامترهای انتخاب‌ شده هم از نظر هیدرولیک انتقال رسوب و هم از نظر بررسی عدم قطعیت داده­های آزمایشگاهی مهم هستند. نتایج نشان می­دهد که افزایش زبری بستر منجر به کاهش مشخصات پرش و در نتیجه میزان انتقال بار بستر می­گردد. همچنین اثر دمای (لزجت) آب در محدوده ماسه اثرات قابل ‌توجهی دارد و ضروری است به‌منظور کاهش عدم قطعیت داده­ های آزمایشگاهی تحت کنترل قرار بگیرد. اثر چگالی رسوبات بر نرخ انتقال رسوب هم در محدوده ماسه و هم شن قابل ‌توجه است و در نظر گرفتن دانه­ های با چگالی متفاوت از رسوبات طبیعی در مطالعات آزمایشگاهی می­تواند اثرات قابل‌توجهی بر نتایج داشته باشد.

کلیدواژه‌ها


براتی، ر.، صالحی نیشابوری س. ع. ا. و احمدی، گ. (1396). "انتقال بار بستر تحت رژیم پرش رسوبات در جریان آشفته بخش اول: توسعه مدل" مجله هیدرولیک، همین شماره.
مهدیزاده، س. س. (1387). "بررسی آزمایشگاهی حرکت ذره رسوبی در نزدیکی بستر با استفاده از دستگاه PIV"، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس، تهران، ایران.
Abbott, J. E., and Francis, J. R. D. (1977). “Saltation and suspension trajectories of solid grains in a water stream.” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 284(1321), 225-254.
Akbari, G. H., and Barati, R. (2012). Comprehensive analysis of flooding in unmanaged catchments. Proceedings of the ICE-Water Management, 165(4), 229-238.
Barati, R., Salehi Neyshabouri, S. A. A. and G. Ahmadi, (2014a) “Development of a 3D Lagrangian model for numerical simulation of initiation of motion of sediment particles” The 11th International Conference on Coasts, Ports and Marine Structures (ICOPMAS 2014), Tehran, Iran, 24-26, 215–218.
Barati, R., Salehi Neyshabouri, S. A. A. and G. Ahmadi, (2015a) “On the threshold of motion of sediment grains: Hydrodynamic forces effects” The Sixth Jordanian International Civil Engineering Conference, Jordan.
Barati, R., Salehi Neyshabouri, S. A. A. and G. Ahmadi, (2014b). “Numerical simulation of the sediment transport in the saltation regime” River Flow 2014 - the 7th International Conference on Fluvial Hydraulics –EPFL, Lausanne, Switzerland.
Barati, R., Salehi Neyshabouri, S. A. A., and Ahmadi, G. (2015b). “A 3D Eulerian-Lagrangian model for the motion of the multiple non-cohesive sediment grains in water” 10th International Congress on Civil Engineering, University of Tabriz, Tabriz, Iran.
Cheng, N. S. (2015). “Representative grain size and equivalent roughness height of a sediment bed”. Journal of Hydraulic Engineering, 142(1), 06015016(1-4).
Cheng, N. S., Nguyen, H. T., Zhao, K., and Tang, X. (2011). “Evaluation of flow resistance in smooth rectangular open channels with modified Prandtl friction law.” Journal of Hydraulic Engineering, 137(4), 441-450.
Derx, J., Farnleitner, A. H., Zessner, M., Pang, L., Schijven, J., and Blaschke, A. P. (2012). “Evaluating the effect of temperature induced water viscosity and density fluctuations on virus and DOC removal during river bank filtration–a scenario analysis.” River Systems, 20(3-4), 169-184.
Francis, J. R. D. (1973). “Experiments on the motion of solitary grains along the bed of a water-stream.” In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 332(1591), 443-471.
García, M. H. (Ed.). (2008). Sedimentation engineering: processes, measurements, modeling, and practice (No. 110). ASCE Publications.
Isaak, D. J., Wollrab, S., Horan, D., and Chandler, G. (2012). “Climate change effects on stream and river temperatures across the northwest US from 1980–2009 and implications for salmonid fishes.” Climatic Change, 113(2), 499-524.
Marszelewski, W., and Pius, B. (2015). “Long-term changes in temperature of river waters in the transitional zone of the temperate climate: a case study of Polish rivers.” Hydrological Sciences Journal, 61(8), 1430-1442.
Morvan, H., Knight, D., Wright, N., Tang, X., and Crossley, A. (2008). “The concept of roughness in fluvial hydraulics and its formulation in 1D, 2D and 3D numerical simulation models”. Journal of Hydraulic Research, 46(2), 191-208.
Nasrollahi, A., Salehi Neyshabouri, S. A. A., Ahmadi, G., and Namin, M. M. (2008). Numerical simulation of particle saltation process. Particulate Science and Technology, 26(6), 529-550.
Niño, Y., García, M., and Ayala, L. (1994). Gravel saltation: 1. Experiments. Water resources research, 30(6), 1907-1914.
Oberkampf, W. L., Sindir, M. M., and Conlisk, A. T. (1998). Guide for the verification and validation of computational fluid dynamics simulations. American Institute of Aeronautics and Astronautics (AIAA).
Orr, H. G., Simpson, G. L., Clers, S., Watts, G., Hughes, M., Hannaford, J. and Evans, R. (2015). “Detecting changing river temperatures in England and Wales”. Hydrological Processes, 29(5), 752-766.
Piotrowski, A. P., Napiorkowski, M. J., Napiorkowski, J. J., and Osuch, M. (2015). “Comparing various artificial neural network types for water temperature prediction in rivers.” Journal of Hydrology, 529, 302-315.
Ruark, M. D., Niemann, J. D., Greimann, B. P., and Arabi, M. (2011). “Method for assessing impacts of parameter uncertainty in sediment transport modeling applications.” Journal of Hydraulic Engineering, 137(6), 623-636.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., and Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & Sons.
Smith, M. W. (2014). Roughness in the earth sciences. Earth-Science Reviews, 136, 202-225.
van Rijn, L. C. (1984). “Sediment transport, part I: bed load transport.” Journal of Hydraulic Engineering, 110(10), 1431-1456.
Webb, B. W., and Walling, D. E. (1985). “Temporal variation of river water temperatures in a Devon river system.” Hydrological Sciences Journal, 30(4), 449-464.