مدل‌سازی دو‌بعدی معادله جابه‎جایی-پراکندگی کسری به‌روش عددی بدون‎شبکه محلی پتروو-گالرکین (مطالعه موردی: رودخانه آتاباسکا)

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 دانش آموخته دکتری سازه‌های آبی، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی کرج، دانشگاه تهران

2 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشگاه تهران

3 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی ، دانشگاه تهران، کرج.

4 دانشگاه تربیت مدرس

چکیده

به‌منظور مدل‌سازی انتقال آلاینده در رودخانه‌های دو بعدی از روش عددی بدون‌شبکه محلی پتروو-گالرکین استفاده شده است. هدف از انجام این تحقیق ارائه یک مدل جامع با استفاده از الگوریتم‌های دقیق و کارآمد برای حل معادله جابه‎جایی- پراکندگی می‌باشد. حل دو ‎بعدی معادله جابه‎جایی-پراکندگی کسری مکانی برای آبراهه‎های با هندسه و ضرایب هیدرولیکی متغیر (جریان پایدار و غیریکنواخت) ارائه می‌شود. مشتقات مرتبه کسری به‌دلیل ماهیت غیرمحلی قادر به تولید منحنی‌هایی با دنباله‌های بلند و چولگی هستند که در این مطالعه برای حل این جمله از روش کاپوتو استفاده شده است. به‌منظور حل معادله جابه‎جایی-پراکندگی کسری با روش بدون‎شبکه محلی پتروو-گالرکین، تابع تقریب حداقل مربعات متحرک و تابع وزن اسپیلاین درجه چهار به‌کار گرفته شد. در نهایت اعتبار مدل با داده‎های مشاهداتی رودخانه آتاباسکا و نتایج تحقیقات ارائه‌شده توسط ملکی (خروجی مدل مایک 21) برای مقاطع عرضی در کیلومترهای 425/2، 725/3 و 725/4 بررسی شد. در حالت اعتبارسنجی پارامترهای ضرایب پراکندگی، مشتقات مرتبه کسری و ضرایب چولگی با افزایش R2، کاهش MSE و MAE بین داده‎های مشاهداتی و محاسباتی بهینه شدند. مقدار ضریب پراکندگی به‌ترتیب در راستای طول و عرض برابر 68 و 5/2 مترمربع بر ثانیه به‌دست آمد. بررسی‌ها نشان داد مقدار R2 در روش بدون‌شبکه محلی پتروو-گالرکین نسبت به مدل مایک برای سه مقطع عرضی مذکور به‌طور متوسط 11 درصد افزایش یافته است. براساس نتایج این مطالعه، معادله جابه‌جایی-پراکندگی کسری به‌دلیل انعطاف‌پذیری بالا، توصیفی به مراتب دقیق‌تر و خروجی‌های نزدیک‌تر به داده‌های اندازه‌گیری‎شده نسبت به حالت کلاسیک (مشتق مرتبه صحیح) ارائه می‌کند.

کلیدواژه‌ها


Abdeljawad, T., Atangana, A., Gómez-Aguilar, J. F. and Jarad, F. (2019). On a more general fractional integration by parts formulae and applications. Physica A: Statistical Mechanics and its Applications, 536, 122494.
Atluri, S.N. and Zhu, T. (1998). A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 22(2), 117-127.
Belytschko, T., Gu, L. and Lu, Y.Y. (1994). Fracture and crack growth by element free Galerkin methods. Modelling and Simulation in Materials Science and Engineering, 2(3A), 519.
Blank, L. (1996). Numerical treatment of differential equations of fractional order. Numerical Analysis Report, University of Manchester, Department of Mathematics.
Chapra, S.C. (1997). Surface water-quality modeling (Vol. 1): McGraw-Hill, New York.
Deng, Z.Q., Singh, V.P., and Bengtsson, L. (2004). Numerical solution of fractional advection-dispersion equation. Journal of Hydraulic Engineering, 130(5), 422-431.
Deymevar, S. (2018). Numerical solution of shallow water equations using mesh-free Petrov-Galerkin method. M.Sc. thesis, University of Birjand, Birjand. (In Persian)
Fischer, H.B., List, J.E., Koh, C.R., Imberger, J. and Brooks, N.H. (1979). Mixing in inland and coastal waters. Academic press.
Gholami, Z., Yasi, M., Nazi Ghameshlou, A. and Mazaheri, M. (2021). Numerical solution of advection-dispersion equation using mesh-free Petrov-Galerkin method (case study: Murray Burn river). Water and Wastewater Science and Engineering (JWWSE), 6(3), 47-57. (In Persian)
Huang, Q., Huang, G. and Zhan, H. (2008). A finite element solution for the fractional advection–dispersion equation. Advances in Water Resources, 31(12), 1578-1589.
Li, J., Chen, Y. and Pepper, D. (2003). Radial basis function method for 1-D and 2-D groundwater contaminant transport modeling. Computational Mechanics, 32(1), 10-15.
Li, X. and Xu, C. (2010). Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Communications in Computational Physics, 8(5), 1016.
Lian, Y., Wagner, G.J., and Liu, W.K. (2017). A meshfree method for the fractional advection-diffusion equation. In Meshfree methods for partial differential equations VIII, pp. 53-66, Springer, Cham.
Lin, H. and Atluri, S.N. (2000). Meshless local Petrov-Galerkin(MLPG) method for convection diffusion problems. CMES (Computer Modelling in Engineering & Sciences), 1(2), 45-60.
Lin, Z., Wang, D., Qi, D., and Deng, L. (2020). A Petrov–Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equations. Computational Mechanics, 
66(2), 323-350.
Liu, G.-R. (2002), Mesh free methods: moving beyond the finite element method, CRC press. New York Washington, D.C.
Liu, G.R. and Gu, Y.T. (2005). An introduction to meshfree methods and their programming. Springer Science & Business Media.
Mahmoodian Shooshtari, M. (2009). Principles of open channel flow. Shahid Chamran University Press, Ahvaz. (In Persian)
Maleki, F. (2016). Pollutant mixing investigation in River using 2D modelling and proposing practical relationships, M.Sc. thesis, Tarbiat Modares University, Tehran. (In Persian)
Mohtashami, A. (2017). Using Mesh-free method for groundwater flow modeling in unconfined aquifer. M.Sc. thesis, University of Birjand, Birjand. (In Persian)
Podlubny, I. (1999). Fractional differential equations. Mathematics in science and engineering, 198, 41-119.
Putz, G. and Smith, D.W. (2000). Two-dimensional modelling of effluent mixing in the Athabasca River downstream of Weldwood of Canada Ltd., Hinton, Alberta.
Riahi-Madvar, H., Ayyoubzadeh, S.A., Khadangi, E., and Ebadzadeh, M.M. (2009). An expert system for predicting longitudinal dispersion coefficient in natural streams by using ANFIS. Expert Systems with Applications, 36(4), 8589-8596.
Tayebi, A., Shekari, Y., and Heydari, M.H. (2017). A meshless method for solving two-dimensional variable-order time fractional advection–diffusion equation. Journal of computational physics, 340, 655-669.