شبیه سازی عددی تخلیه ی فاضلاب های سنگین از تخلیه کننده ی مستغرق °30 در حالت های آزاد و مجاور به بستر

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 داشگاه صنعتی نوشیروانی بابل

2 دانشگاه صنعتی نوشیروانی بابل

3 استادیار، دانشگاه صنعتی نوشیروانی بابل

چکیده

تخلیه‌ی شورابه‌ی حاصل از فرآیند شیرین‌سازی آب دریا‌ در محیط، عمدتا از طریق تخلیه‌کننده‌های دریایی صورت می‌گیرد. به عنوان یک استاندارد جهانی، تخلیه‌ی مستغرق با زاویه‌ی °60 نسبت به افق به عنوان حالت بهینه‌ مورد پذیرش قرار گرفته است؛ اما ارتفاع حداکثر صعود جریان در این زاویه نسبتا زیاد بوده و این موضوع در سواحل کم‌عمق مشکلاتی به همراه خواهد داشت. از این‌رو در این آب‌ها، تخلیه با زوایای کمتر پیشنهاد شده است. مطالعه‌ی پیش رو، به شبیه‌سازی تخلیه‌کننده‌ی مستغرق °30 در دو حالت آزاد و مجاور به بستر می‌پردازد. این شبیه‌سازی‌ها با اصلاح حلگری در نرم‌افزار متن‌باز OpenFOAM انجام شده است. مشخصات هندسی و اختلاطی جت‌های سنگین °30 در حالت آزاد و نزدیک به بستر تعیین و با پژوهش‌های آزمایشگاهی و تحلیلی گذشته مقایسه شده است. مقایسه‌ی‌ نتایج نشان می‌دهد شبیه‌سازی‌های انجام شده با دقت بالایی مشخصات هندسی جریان را پیش‌بینی می‌کنند؛ اما میزان ترقیق در نقطه‌ی حداکثر ارتفاع خط مرکزی و نقطه‌ی بازگشت به صورت قابل ملاحظه‌ای محافظه‌کارانه‌تر از مقادیر آزمایشگاهی و تحلیلی برآورد شده است.

کلیدواژه‌ها


 
Abessi, O. (2018). Chapter 7 - Brine Disposal and Management—Planning, Design, and Implementation. V. G. B. T.-S. D. H. Gude, ed., Butterworth-Heinemann, 259–303.
Abessi, O., and Roberts, P. J. W. (2015a). Effect of nozzle orientation on dense jets in stagnant environments. Journal of Hydraulic Engineering, American Society of Civil Engineers, 141(8), 6015009.
Abessi, O. and Roberts, P.J.W. (2015b). Dense jet discharges in shallow water. Journal of Hydraulic Engineering, American Society of Civil Engineers, 142(1), 4015033.
Abessi, O., Roberts, P.J. and Gandhi, V. (2017). Rosette diffusers for dense effluents. Journal of Hydraulic Engineering, 143(4), p.06016029.
Abessi, O. and Roberts, P.J.W. (2018). Rosette diffusers for dense effluents in flowing currents. Journal of Hydraulic Engineering.
Abessi, O., Saeedi, M., Davidson, M. and Zaker, N.H. (2012). Flow Classification of Negatively Buoyant Surface Discharge in an Ambient Current. Journal of Coastal Research.
Ardalan, H. and Vafaei, F. (2019). CFD and Experimental Study of 45° Inclined Thermal-Saline Reversible Buoyant Jets in Stationary Ambient. Environmental Processes, Springer, 1–21.
Cederwall, K. (1968). Hydraulics of marine waste water disposal. Chalmers tekniska högskola.
El-Dessouky, H.T. and Ettouney, H.M. (2002). Fundamentals of salt water desalination. Elsevier.
Ferziger, J.H. and Perić, M. (2002). Computational methods for fluid dynamics. Springer.
Fox, R.O. and Stiles, H.L. (2003). Computational models for turbulent reacting flows. Cambridge university press Cambridge.
Gildeh, H.K., Mohammadian, A., Nistor, I., and Qiblawey, H. (2015). Numerical modeling of 30 and 45 inclined dense turbulent jets in stationary ambient. Environmental Fluid Mechanics, Springer, 15(3), 537–562.
Holzmann, T. (2016). Mathematics, numerics, derivations and OpenFOAM®. Loeben, Germany: Holzmann CFD, URl: https://holzmann-cfd. de (visited on Nov. 29, 2017).
Huai, W., Li, Z., Qian, Z., Zeng, Y., Han, J. and Peng, W. (2010). Numerical simulation of horizontal buoyant wall jet. Journal of Hydrodynamics, Springer, 22(1), 58–65.
Kikkert, G.A. (2006). Buoyant jets with two and three-dimensional trajectories. University of Canterbury. Civil Engineering.
Kikkert, G.A., Davidson, M.J. and Nokes, R.I. (2007). Inclined negatively buoyant discharges. Journal of Hydraulic engineering, American Society of Civil Engineers, 133(5), 545–554.
Lai, C.C.K. and Lee, J.H.W. (2012). Mixing of inclined dense jets in stationary ambient. Journal of hydro-environment research, Elsevier, 6(1), 9–28.
Lai, C.C.K. and Socolofsky, S. A. (2018). Budgets of turbulent kinetic energy, Reynolds stresses, and dissipation in a turbulent round jet discharged into a stagnant ambient. Environmental Fluid Mechanics, Springer, 1–29.
Launder, B.E. and Spalding, D.B. (1983). The numerical computation of turbulent flows. Numerical prediction of flow, heat transfer, turbulence and combustion, Elsevier, 96–116.
Oliver, C.J., Davidson, M.J. and Nokes, R.I. (2008). k-ε predictions of the initial mixing of desalination discharges. Environmental Fluid Mechanics, Springer, 8(5–6), 617.
Pope, S. B. (2001). Turbulent flows. IOP Publishing.
Rard, J.A. and Miller, D.G. (1982). Mutual diffusion coefficients of SrCl 2–H 2 O and CsCl—H 2 O at 25° C from Rayleigh interferometry. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Royal Society of Chemistry, 78(3), 887–896.
Roberts, P.J.W., Ferrier, A., and Daviero, G. (1997). Mixing in inclined dense jets. Journal of Hydraulic Engineering, American Society of Civil Engineers, 123(8), 693–699.
Robinson, D., Wood, M., Piggott, M. and Gorman, G. (2016). CFD modelling of marine discharge mixing and dispersion. Journal of Applied Water Engineering and Research, Taylor & Francis, 4(2), 152–162.
Roberts, P.J. and Abessi, O. (2014). Optimization of desalination diffusers using three-dimensional laser-induced fluorescence. Agreement Number R11 AC81, 535.
Saeedi, M., Farahani, A.A., Abessi, O. and Bleninger, T. (2012). Laboratory studies defining flow regimes for negatively buoyant surface discharges into crossflow. Environmental fluid mechanics, 12(5), 439-449.
Shao, D. and Law, A.W.K. (2010). Mixing and boundary interactions of 30° and 45° inclined dense jets. Environmental Fluid Mechanics, 10(5), 521–553.
Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, Elsevier, 24(3), 227–238.
Vafeiadou, P., Papakonstantis, I. and Christodoulou, G. (2005). Numerical simulation of inclined negatively buoyant jets. The 9th international conference on environmental science and technology, September, 1–3.
Zeitoun, M.A., Reid, R., McHilhenny, W.F. and Mitchell, T.M. (1970). Model studies of outfall system for desalination plants. Washington, DC.
Zhang, S., Law, A.W.-K. and Jiang, M. (2017). Large eddy simulations of 45° and 60° inclined dense jets with bottom impact. Journal of Hydro-Environment Research, Elsevier, 15, 54–66.