کاربرد الگوریتم‌های هوشمند برای مدلسازی رابطه دبی-اشل در شرایط استغراق سرریزهای کنگره‌ای و خطی

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 گروه عمران، واحد رامهرمز، دانشگاه آزاد اسلامی، رامهرمز، ایران

2 استادیار گروه مهندسی عمران- دانشکده فنی و مهندسی دانشگاه مراغه

3 گروه عمران

چکیده

استغراق سرریز با افزایش سطح آب پایین‌دست به ترازی مساوی یا بیش از تراز تاج سرریز، دبی عبوری از سرریز را کاهش می‌دهد. هدف این پژوهش استفاده از الگوریتم‌های SVM و GEP برای افزایش دقت پیش‌بینی رابطه‌ی دبی-اشل در سرریزهای کنگره‌ای و لبه تیز مستغرق است. از متغیرهای Hd (بار کل پایین-دست جریان مستغرق)، Ho (بار کل بالادست جریان آزاد)، H* (بار کل بالادست جریان مستغرق)، P (ارتفاع سرریز)، U (سرعت جریان آزاد بالادست)، α (زاویه دیواره جانبی سرریز) و Cd (ضریب دبی جریان)، پنج پارامتر بی‌بعد Fr1، Cd، H_d/H_o ، H_o/P و α برای پیش‌بینی H^*/H_o بمنظور محاسبه نسبت دبی عبوری از پایین‌دست تحت شرایط استغراق، Qs، به دبی عبوری تحت شرایط آزاد، Q1، براساس شاخص‌های عملکرد مجذور میانگین مربعات خطا (RMSE)، ضریب تبیین (R2)، خطای نسبی (RE) و نسبت تفاوت توسعه داده شده (DDR) استفاده شدند. مقدار شاخص‌های RMSE، R2، RE و ZDDR(max) برای سرریز کنگره‌ای در دوره تست الگوریتم‌های SVM و GEP به ترتیب (0104/0، 9996/0، 741/1، 267/45) و (0157/0، 9992/0، 533/0، 73/19) و برای سرریز خطی به ترتیب (0066/0، 9996/0، 320/0، 91/67) و (0088/0، 9998/0، 5432/0، 73/63) بدست آمدند. ترکیب نهایی پارامترهای مستقل در سرریز کنگره‌ای و خطی به ترتیب شامل (Fr1، Cd، H_d/H_o ، H_o/P و α) و (Fr1 و H_d/H_o ) شدند. نتایج نشان داد SVM در هر دو سرریز نسبت به GEP عملکرد بهتری در پیش-بینی H^*/H_o دارد. دقت SVM در سرریز خطی از کنگره‌ای بیشتر بود. آنالیز حساسیت نشان دهنده‌ی بیشترین تاثیرگذاری Fr1 و H_d/H_o بترتیب در سرریزهای کنگره‌ای و خطی بود.

کلیدواژه‌ها


Abbaspour1, A., Abdolahpour, M. and Salmasi, F. (2013). Numerical Simulation of Flow over Rectangular Broad-crested weir with Upstream and Downstream Side Slopes Using Fluent Model. Journal of water and soil science, 23(4), 265-276. (In Persian)
Akbari, M., Salmasi, F., Arvanaghi, H,, Karbasi, M. and Farsadizadeh, D. (2019). Application of Gaussian Process Regression Model to Predict Discharge Coefficient of Gated Piano Key Weir. Water Resources Management, 33, 3929-3947.
Azimi, H., Bonakdari, H. and Ebtehaj, I. (2019). Design of radial basis function‑based support vector regression in predicting the discharge coefficient of a side weir in a trapezoidal channel, Applied Water Science, 9, 78-90.
Clemmens, A.J., Wahl, T.L., Bos, M.G. and Replogle, J.A. (2001). Water measurement with flumes and weirs. Rep. No. 58, International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands.
Crookston, B.M. (2010). Labyrinth weirs. Ph.D. thesis, Utah State University, Logan, UT.
Dabling, M.R. (2014). Nonlinear weir hydraulics. M.Sc. Thesis. Utah State University, Logan, UT.
Depnath, K. and Chaudhuri, S. (2010). Laboratory Engineering, ASCE, 121(3), 247-255.
Dizabadi, Sh., Seyed Hakim, S. and Azimi A.H. (2020). Discharge characteristics and structure of flow in labyrinth weirs with a downstream pool. Flow Measurement and Instrumentation, 71, 1-16.
Experimental on Local Scour around Cylinder for Clay-sand Mixed Beds. Engineering Geology, 51 (61), 1-11.
Falvey, H. T. (2003). Hydraulic design of labyrinth weirs, ASCE, Reston, Va.
Fan, R.E., Chen, P.H. and Lin, C.J. (2005). Working Set Selection Using Second Order Information for Training Support Vector Machines. Journal of Machine Learning Research, 6, 1889-1918.
Foroudi Khowr, A., Saneie, M. and Azhdari Moghaddam, M. (2017). Comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Support Vector Machines (SVM) for discharge capacity prediction of a sharp-crested Weirs. Iranian Journal of Irrigation and Drainage, 5(11), 772-784. (In Persian)
Francis, J.B. (1884). Experiments on the flow of water over submerged weirs. Transactions of the American Society of Civil Engineers, ASCE, 13, 303-312.
Fteley, A. and Stearns, F. P. (1883). Description of some experiments on flow of water made during the construction of works for conveying water of Sudbury River to Boston. Transactions of the American Society of Civil Engineers, ASCE, 12, 101-108.
Hay, N. and Taylor, G. (1970). Performance and design of labyrinth weirs. Journal of Hydraulic Engineering, ASCE. 96 (11), 2337-2357.
Heydari, M., Ahmadi, M.M and Rahimpour, M. (2012). Experimental Investigation of Combined flow over weirs and below Gates. Journal of Irrigation and Water Engineering, 2(8), 66-77. (In Persian)
Kabiri-Samani, A.R., Ansari, A., and Borghei, S.M. (2010). Hydraulic behaviour of flow over an oblique weir. J. Hydraulic Research. 48(5), 669-673.
KarimiChahartaghi, M., Nazari, S., and Mahmoodian Shooshtari, M. (2019). Experimental and numerical simulation of arced trapezoidal piano key weirs. Flow Measurement and Instrumentation, 68, 1-18.
Kumar, S., Ahmad, Z. and Mansoor, T. (2011). A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs, Flow Measurement and Instrumentation, 22, 175-180.
Leite Ribeiro, M., Bieri, M., Boillat, J.L., Schleiss, A.J., Singhal, G. and Sharma, N. (2012). Discharge Capacity of Piano Key Weirs, Journal of Hydraulic engineering, 138, 199-203.
Majedi Asl M. and Fuladipanah M. (2019). Apllication of the evolutionary methods in determining the discharge coefficient of triangular labyrinth weirs. Journal of Water and Soil Science, 22(4), 279-290.
Meshkavati Toroujeni1, S.J., Emadi A.R., Dehghani, A.A. and Msoudian, M. (2017). Experimentally Investigation of Discharge Coefficient at Trapezoidal Labyrinth Weirs. Iranian Journal of Irrigation and Drainage, 5(11), 852-864. (In Persian)
Nikpiek, P. and Kashefipour, S.M. (2014). Effect of the hydraulic conditions and structure geometry on mathematical modelling of discharge coefficient for duckbill and oblique weirs. Journal of Irrigation Sciences and Engineering, 39(1), 1-10. (In Persian)
Noori, R. Khakpour, A., Omidvar, B. and Farokhnia, A. (2010). Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Systems with Applications, 37, 5856-5862.
Norouzi, R., Daneshfaraz, R. and Ghaderi, A. (2019). Investigation of discharge coefficient of trapezoidal labyrinth weirs using artificial neural networks and support vector machines. Applied Water Science, 9, 148-158.
Roshangar, K., Majedi, M., Aalami M.T. and Shiri, J. (2018). Experimental Evaluation of Free and Submerged Flow over Piano Key Weirs. Irrigation and Drainage Structures Engineering Research, 19(70), 113-126. (In Persian)
Roushangar, K. Aalami, M.T. and Mirheidarian, S. (2014). The Efficiency of Gene Expression Programming Method to Estimate the Scour Depth in Cohesive and Non‐Cohesive Soil Beds at the Bridge Piers. Journal of Civil and Environmental Engineering, 44(2), 21-33. (In Persian)
Roushangar, K., Foroudi Khowr, A., and Saneie, M. (2017). Prediction of Discharge Coefficient for Ogee Spillway with Curve Axis Using Support Vector Machine by Comparison with Adaptive Neuro Fuzzy Inference System. Iranian Journal of Irrigation and Drainage, 4(11): 647-657. (In Persian)
Roushangar, K., Alami, M.T., Shiri, J. and Majedi Asl, M. (2018). Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine. Hydrology research, 49(3), 924-938.
Safarzadeh1, A., Khayat Rostami, S and Khayat Rostami, B. (2019). Study of water head effects on discharge distribution and streamlines pattern over the asymmetric rectangular piano key weirs. Journal of Hydraulics, 14(1), 1-17. (In Persian)
Seo, I.W., Do, K.Y., Park, Y.S. and Song, C.G. (2016). Spillway discharges by modification of weir shapes and overflow surroundings. Environmental Earth Science, 75(6), 496-509.
Taylor, G. (1968). The performance of labyrinth weirs. Ph.D. thesis, University of Nottingham, Nottingham, U.K.
Tullis B.P. and Neilson J. (2008). Performance of Submerged Ogee-Crest Weir Head-Discharge Relationships. Journal of Hydraulic Engineering, ASCE, 134(4), 486-491.
Tullis J.P., Nosratollah A. and Waldron D. (1995). Design of Labyrinth Spillways. Journal of Hydraulic Eng., 121(3), 247-255.
Tullis, B.P., Young, J.C. and Chandler, M.A. (2007). Head-Discharge Relationships for Submerged Labyrinth Weirs.  Journal of hydraulic engineering, ASCE, 133, 248-254.
U.S. Bureau of Reclamation (USBR). (1987). Design of small dams, U.S. Government Printing Office, Washington, D.C.
Vapnik. V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag. New York. 187P.
Villemonte, J.R. (1947). Submerged weir discharge studies. Engineering News-Record, 139(26), 54-56.
Zerihun, Y.T. and Fenton, J.D. (2007). A Boussinesq-type model for flow over trapezoidal profile weirs. Journal of Hydraulic Research, 45(4), 519-528.