بررسی عددی میدان جریان در کانال مرکب مورب

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 گروه عمران، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

2 Anmadi Roshan Ave. Bu-Ali Sina University Faculty of Engineering

چکیده

پیش‌بینی رفتار جریان در رودخانه‌ها به ویژه در مواقع سیلابی و در هنگام ایجاد مقاطع مرکب بسیار مهم است. در پژوهش حاضر تلاش شده است با استفاده از ابزار دینامیک سیالات محاسباتی (CFD) میدان جریان شامل توزیع عرضی سرعت متوسط درعمق، تنش برشی مرزی، نمودار‌های منحنی‌های هم‌سرعت، جریان‌های ثانویه و نیمرخ سطح آب در یک کانال مرکب مورب با زاویه اریب 81/3 درجه به صورت عددی شبیه‌سازی شود. برای این منظور از نرم‌افزار محاسباتی FLOW-3D و مدل‌های آشفتگی گروه‌های دوباره نرمال شده (RNG) و شبیه‌سازی گردابه بزرگ (LES) استفاده شده است. نتایج شبیه‌سازی عددی در شش مقطع در طول کانال مرکب مورب با نتایج مطالعات آزمایشگاهی مقایسه شده است. نتایج حاصله بیانگر آن است که مدل آشفتگی RNG عملکرد بهتری نسبت به مدل آشفتگی LES در تخمین ویژگی‌های مختلف جریان در کانال مرکب مورب داشته است. به نحوی که میانگین قدرمطلق درصد خطا (MAPE) بین نتایج مدل آشفتگی RNG و داده‌های آزمایشگاهی مورد بررسی در این پژوهش، برای پیش‌بینی توزیع عرضی سرعت متوسط در عمق برابر 53/6 درصد، تنش برشی مرزی برابر 07/12 درصد، توزیع دبی برابر 59/4 درصد و نیمرخ سطح آب برابر 97/1 درصد بوده است.

کلیدواژه‌ها


Beaman, F. (2010). Large eddy simulation of open channel flows for conveyance estimation, PhD Thesis, Nottingham University, UK.
Biabani, S., Hamidi, M. and Navayi Neya, B. (2019). Numerical simulation of the chute convergence effects on forming the transverse wave in flood evacuation systems, Journal of Hydraulics, 14(3), 67-84. (in Persian)
Bousmar, D. (2002). Flow modeling in compound channels: Momentum transfer between main channel and prismatic or non-prismatic floodplains, PhD Thesis, University Catholique de Louvain, Belgium.
Bousmar, D., Jacqmin, T., Wyseur, S. and Van Emelen, S. (2012). Flow in skewed compound channels with rough floodplains, Proceedings of the River Flow 2012, San Jose, Costa Rica.
Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., Coleman, H. and Raad, P.E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, Journal of Fluids Engineering, 130, 078001-4.
Chicco, D., Warrens, M.J. and Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Computer Science, 7, e623, 1-24.
Chlebek, J. (2009). Modelling of simple prismatic channels with varying roughness using the SKM and a study of flows in smooth non-prismatic channels with skewed floodplains, PhD Thesis, Birmingham University, UK.
Dolati Mahtaj, M. (2021). Experimental study of flow in skewed compound channel with inclined floodplains, MSc Thesis, Bu-Ali Sina University, Iran. (in Persian)
Elliott, S.C.A. (1990). An investigation into skew channel flow, PhD Thesis, University of Bristol, UK.
Elliott, S.C.A. and Sellin, R.H.J. (1990). SERC flood channel facility: skewed flow experiments, Journal of Hydraulic Research, 28(2), 197-214.
Ervine, D.A. and Jasem, H.K. (1995). Observations on flows in skewed compound channels, Proceedings of the Institution of Civil Engineers-Water, Maritime and Energy, 112(3), 249-259.
Flow Science. (2016).  FLOW-3D User Manual, Version 11.2, Santa Fe, New Mexico, Flow Science Inc, https://www.flow3d.com.
Ghaderi, A., Abbasi, S. and Di Francesco, S. (2021). Numerical study on the hydraulic properties of flow over different pooled stepped spillways, Water, 13, 710, 1-26.
James, M. and Brown, B.J. (1977). Geometric parameters that influence floodplain flow, waterways experiment section, Report H-77-1, US Army Corps of Engineering, Mississippi, USA.
Jasem, H.K. (1990). Flow in two-stage channels with the main channel skewed to the flood plain direction, PhD Thesis, University of Glasgow, Scotland.
Kara, S., Stoesser, T. and Sturm, T.W. (2012). Turbulence statistics in compound channels with deep and shallow overbank flows, Journal of Hydraulic Research, 50(5), 482-493.
Karimpour, S., Gohari, S. and Yasi, M. (2020). Experimental and numerical investigation of blockage effects on flows in a culvert, Journal of Hydraulics, 15(2), 1-14. (in Persian)
Naik, B., Khatua, K.K., Wright, N., Sleigh, A. and Singh, P. (2018). Numerical modeling of converging compound channel flow, ISH Journal of Hydraulic Engineering, 24(3), 285-297.
Patel, V.C. (1965). Calibration of the Preston tube and limitations on its use in pressure gradients, Journal of Fluid Mechanics, 23(1), 185-208.
Rahmani Firozjaei, M., Salehi Neyshabouri, S.A.A., Amini Sola, S. and Mohajeri, S.H. (2019). Numerical simulation on the performance improvement of a lateral intake using submerged vanes, Iranian Journal of Science and Technology Transactions of Civil Engineering, 43, 167-177.
Rameshwaran, P. and Naden, P.S. (2003). Three dimensional numerical simulation of compound channel flows, Journal of Hydraulic Engineering, 129, 645-652.
Rezaei, B. and Amiri, H. (2018). Numerical modelling of flow field in compound channels with non-prismatic floodplains, Scientia Iranica, Transactions A: Civil Engineering, 25, 2413-2424.
Rezaei, B. and Safarzade, A. (2016). Numerical modeling of flow field in prismatic compound channels with different floodplain widths, Journal of Applied Research in Water and Wastewater, 3(2), 260-270.
Seif, M.M. and Rezaei, B. (2019). Numerical study on the effects of the floodplains angles on interaction between the main channel and floodplains in skewed compound channels, Journal of Ferdowsi Civil Engineering, 32(1), 151-164. (In Persian)
Sellin, R.H.J. (1964). A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain, La Houille Blanche, 7, 793-802.
Sellin, R.H.J. (1995). Hydraulic performance of a skewed two-stage flood channel, Journal of Hydraulic Research, 33(1), 43-64.
Shiono, K. and Knight, D.W. (1991). Turbulent open-channel flows with variable depth across the channel, Journal of Fluid Mechanics, 222, 617-646.
Sofialidis, D. and Prinos, P. (1998). Compound open-channel flow modeling with nonlinear low-Reynolds k- models, Journal of Hydraulic Engineering, 124, 253-262.
Tominaga, A. and Nezu, I. (1991). Turbulent structure in compound open-channel flows, Journal of Hydraulic Engineering, 117(1), 21-41.
Xie, Z., Lin, B. and Falconer, R.A. (2013). Large-eddy simulation of the turbulent structure in compound open-channel flows, Advances in Water Resources, 53, 66-75.
Yakhot, V. and Orszag, S.A. (1986). Renormalization group analysis of turbulence. I. basic theory, Journal of Scientific Computing, 1, 3-51.