طراحی بهینه نمونه‌برداری فشار در شبکه‌های توزیع آب برای کالیبراسیون مدل‎های هیدرولیکی

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 دانشگاه تهران - گروه عمران

2 دانشگاه تهران

3 دانشگاه صنعتی ارومیه

چکیده

یکی از مهم‌ترین کاربردهای مدل‌های هیدرولیکی شبکه‌های توزیع آب، شبیه‌سازی و درک شرایط غیرنرمال شبکه است. لذا وجود مدل‌های کالیبره شده برای ایجاد درک واقعی از رفتار شبکه ضروری است. انجام این فرایند نیازمند جمع‌آوری داده‌های میدانی از شبکه است تا با مقایسه رفتار پیش‌بینی‌شده به‌وسیله مدل با داده‌های واقعی، عملکرد مدل اصلاح شود. نمونه‌برداری از شبکه محدودیت‌های مختلفی دارد. بنابراین فرآیند طراحی نمونه‎برداری، جنبه‌های مختلف نمونه‌برداری نظیر مکان، تعداد و تناوب را به‎صورت بهینه تعیین می‎کند. در این مقاله به‌منظور طراحی نمونه‎برداری، تمرکز روی مکان‌های اندازه‌گیری فشار به‌منظور کالیبراسیون مدل هیدرولیکی است. برای اجرای طراحی نمونه‎برداری، ابتدا با انجام تحلیل حساسیت، عدم‌قطعیت در فشار هر گره میان پارامترهای ورودی مدل تقسیم می‌شود. در این مقاله از روش تحلیل حساسیت عمومی سوبول و الگوریتم ژنتیک چندهدفه عدد صحیح تحت عنوان الگوریتم MI-NSGA-II با دو معیار هزینه‌های نمونه‌برداری کمینه و آنتروپی بیشینه برای انتخاب نقاط نمونه‌برداری بهینه استفاده شده است. بررسی سناریوهای مختلف، بیانگر تأثیر نوع پارامتر بر موقعیت نقاط منتخب است. در این میان میزان مشابهت نتایج سناریوهای ترکیبی با سناریوهای مجزا از حالات شامل زبری، به حالات شامل تقاضا کاهش پیدا می‌کند که بیانگر نقش مؤثرتر زبری در انتخاب نقاط در سناریوهای ترکیبی است. هم‌چنین بررسی حالات ترکیبی پارامترها نشان داد که اندرکنش‌های میان پارامترها در انتخاب نقاط مؤثر است.

کلیدواژه‌ها


Askari, M., Li, J. and Samali, B. (2017). Cost-effective multi-objective optimal positioning of magnetorheological dampers and active actuators in large nonlinear structures. Intelligent Material Systems and Structures, 28(2), 230-253.
Behzadian, K., Ardeshir, A., Kapelan, Z. and Savic, D. (2008). Stochastic sampling design for water distribution model calibration. International Journal of Civil Engineering, 6(1), 48-57.
Bush, C.A. and Uber, J.G. (1998). Sampling design methods for water distribution model calibration, Water Resources Planning and Management, 124(6), 334-344.
De Schaetzen, W.B.F., Walters, G.A. and Savic, D.A. (2000). Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms. Urban Water, 2(2), 141-152.
Homma, T. and Saltelli, A. (1996). Importance measures in global sensitivity analysis of nonlinear models. Reliability Engineering & System Safety, 52(1), 1-17.
Iooss, B. and Lemaître, P. (2015). A review on global sensitivity analysis methods. In: Dellino, G. and Meloni, C. (eds.), Uncertainty Management in Simulation-Optimization of Complex Systems, 101-122, Springer, Boston.
Kapelan, Z.S., Savic, D.A. and Walters, G.A. (2003). Multiobjective sampling design for water distribution model calibration. Water Resources Planning and Management, 129(6), 466-479.
Ormsbee, L.E. (1989). Implicit network calibration. Water Resources Planning and Management, 115(2), 243-257.
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S. and Wu, Q. (2019). Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling & Software, 114, 29-39.
Shao, Y., Chu, S., Zhang, T., Yang, Y. J. and Yu, T. (2019). A greedy sampling design algorithm for the model calibration of nodal demand in water distribution systems. Mathematic Problems in Engineering, https://doi.org/10.1155/2019/3917571.
Soroush, F. and Abedini, M.J. (2019). Optimal selection of number and location of pressure sensors in water distribution systems using geostatistical tools coupled with genetic algorithm. Journal of Hydroinformatics, 21(6), 1030-1047.
 Tang, T., Reed, P., Wagener, T. and Van Werkhoven, K. (2006). Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and Earth System Sciences Discussions, 3(6), 3333- 3395.
Tang, Y., Reed, P., Van Werkhoven, K. and Wagener, T. (2007). Advancing the identification and evaluation of distributed rainfall‐runoff models using global sensitivity analysis. Water Resources Research, 43(6).
Wagner, J.M., Shamir, U. and Marks, D.H. (1988). Water distribution reliability: simulation methods. Water Resources Planning and Management, 114(3), 276-294.
Walski, T.M., Brill Jr, E.D., Gessler, J., Goulter, I.C., Jeppson, R.M., Lansey, K., Lee, H.L., Liebman, J.C., Mays, L. and Morgan, D.R. (1987). Battle of the network models: Epilogue. Water Resources Planning and Management, 113(2), 191-203.