Effects of Pressure Fluctuations on Hydraulic Jacking in Pressurized Tunnels with Low Overburden

Document Type : Research Article


1 M.Sc. Student, Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

2 Associate Professor, Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

3 Associate Professor, Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran


In the present study, fluid, structure and soil interactions in a pressurized water tunnel were modeled by a two-dimensional finite element method, using the “ABAQUS” software. The tunnel lining was considered as a roughening coverage to decrease the roughness coefficient and to increase the flow velocity. The mechanical parameters of surrounding rock were assumed as weak as possible compared to the tunnel concrete lining. Water flow inside the tunnel was modeled, using acoustic elements that are capable of simulating the hydrodynamic forces. Accordingly, the mechanism of crack development in the surrounding rock as the most probable place to prone this destructive phenomenon is studied applying both steady state and transient flow conditions, considering fluid-structure and rock interactions. Steady state and transient flow analyses were performed using the “HAMMER” software. The resulting loads obtained from the hydraulic analyses by HAMMER software were transmitted to the ABAQUS software for structural analyses. The stress analysis of cracked elements of the surrounding rock was carried out based on Mohr-Coulomb fracture criterion. The least values of the overburden to prevent failure due to the hydraulic jacking were evaluated by imposing the flow pressure in both steady and transient flow states. Finally, the effects of increasing height of the overburden on the hydraulic jacking phenomenon were investigated considering transient flow conditions. Results indicate that, with respect to the positions of surrounding rock elements, providing an extra overburden over the tunnel is not essentially a safe solution for the predication of hydraulic jacking phenomenon in rock around a tunnel.


اکبرزاده، پ. (1382). "تحلیل ضربه قوچ در نیروگاه­های آبی ایران به کمک برنامه­نویسی متلب". کنفرانس ملی نیروگاه‌های آبی ایران، تهران.
باقری، م،. و کاظمی، م. (1393). مدل‌سازی عددی سد­های بتنی وزرنی با استفاده از نرم­افزار ABAQUS، انتشارات سیمای دانش، تهران.
راهنمای طراحی سازه­ای تونل­های آب­بر، نشریه 309، سازمان مدریت و برنامه­ریزی کشور، 1384.
شهبازی، ر. و یکرنگ­نیا، م. (1393). راهنمای کاربردی آباکوس به همراه مسائل مهندسی عمران، انتشارات علم عمران، 1393.
صانعی­آرانی، م. (1391). "بررسی عوامل منجر به ترک خوردگی سگمنت تونل انتقال آب گلاب با نگرش ویژه به تنش‌های برجا"، پایان­نامه کارشناسی ارشد، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان.
فیروزآبادی، س.ص.، یزدانی، م. و شریف­زاده،م. (1390). "مطالعه عددی پدیده جکینگ هیدرولیکی در تونل­های تحت‌فشار با استفاده از روش عددی المان­های مجزا"، ششمین کنگره ملی مهندسی عمران، دانشگاه سمنان.
ABAQUS, Theory guide and manual, Release 12.6 ABAQUS, Inc. 2012.
Bae, G.J. (2004). “Evaluation of interfacial properties between rock mass and shotcrete”, International Journal of Rock Mechanics and Mining Sciences, Vol. 41, pp. 106-112.
Bobet, A. and Nam, S.W. (2007). “Stresses around pressure tunnels with semi-permeable liner”, Journal of Rock Engineering , Vol. 40, No. 3, pp. 287-315.
Fernandez, G. and Alvarez, T. (1994). “Seepage induced effective stresses and water pressure around pressure tunnels”, Journal of Geotechnical Engineering, Vol. 120, No. 1, pp. 108-128.
Hachem, F. and Schleiss, A. (2009). “The design of steel-lined pressure tunnels and shafts”, International Journal on Hydropowerand Dams, Vol. 16, No. 3, pp. 142–151.
HAMMER, User gauide, Release 8 Bentley HAMMER  Inc., 2013.
Jaeger, J.C., Cook, N.G.W. and Zimmerman, R.W. (2007). Fundamentals of Rock Mechanics, 4th Edition, Blackwell Publishing, USA.
Olumide, B.A. and Marence, M. (2012). “Finite element model for optimum design of plain concrete pressure tunnels under high internal pressure”, International Journal of Engineering and Technology, Vol. 2, No. 4, pp. 676-683.
Schleiss, A.J. (1986). “Design of pervious pressure tunnels”, International Journal of Water Power and Dam Construction, Vol. 38, No. 5, pp. 21-26.
Simanjuntak, T.D.Y.F., Schleiss, A.J., and Mynett, A.E. (2014). “Pressure tunnels in non-uniform in situ stress conditions”, Journal of Tunneling and Underground Space Technology, No. 42, pp. 227-236.
Zhou, Y., Su, K. and Wu, H. (2015). “Hydro-mechanical interaction analysis of high pressure hydraulic tunnel”, Journal of Tunnelling and Underground Space Technology, No. 47, pp. 28-34.