Development of Mesh-free Numerical Model in the Simulation of Submerged Landslide Phenomena

Document Type : Research Article


1 Ph.D. Candidate, Civil Engineering, Semnan University, Semnan, Iran

2 Department of Civil, Geological and Mining Engineering, Polytechnic Montreal, Montreal, Canada

3 Assistant Professor, Civil Engineering, Semnan University, Semnan, Iran


Landslides are complex phenomena that commonly occur in mountains, oceans, bays, and reservoirs. Considering their economic and life consequences in recent years, it is necessary to find effective methods for prediction of landslides and their destructive effects. Landslide is a complicated phenomenon (especially under water), which involves a highly-reformative multiphase flow of granular materials. Considering the restrictions of the traditional mesh-based numerical models in the modeling of large deformations and the discontinuities, meshless Lagrangian (particle) methods can be the effective alternatives for simulation of landslides. The meshless Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) and Moving Particle Semi-implicit Method (MPS) provide the opportunity to model the deformations and fragmentation in sediment flow. In this research, an MPS meshless Lagrangian model has been developed for modeling of rigid and deformable landslides. In this model, the solid phase is considered as a non- Newtonian visco-plastic fluid, whose behavior is predicted using the µ (I) rheological model. The model has been validated and evaluated in comparison with the available experimental and numerical data. The water surface and the sediment profile obtained from numerical model shows a good compatibility with the experiments. The RMSE value in predicting the numerical water surface and sediment profiles of current study found to be lower compared to the other numerical methods.  


جعفری­ندوشن، ا. (1394). مدل­سازی انتقال رسوبات غیرچسبنده به روش نیمه­ضمنی ذرات متحرک (MPS). رساله دکتری، مهندسی عمران، دانشگاه سمنان.
Assier Rzadkiewicz, S. Mariotti, C. and Heinrich, P. (1997). “Numerical simulation of submarine landslides and their hydraulic effects”. Journal of Waterway, Port, Coastal and Ocean Engineering, 123(4): 149-159.
Ataei-Ashtiani, B., Shobeyri, G. and Farhadi, L. (2008). “Modified incompressible SPH method for simulating free surface problems”. Fluid Dynamics Research, 40: 637-661.
Cremonesi, M., Frangi, A. and Perego, U., (2010). “A Lagrangian finite element approach for the analysis of fluid-structure interaction problems”. Int. J. Numer. Methods Fluids 84: 610–630.
Cremonesi, M., Frangi, A. and Perego, U., (2011). “A Lagrangian finite element approach for the simulation of water-waves induced by landslides”. Comput. Struct. 89: 1086–1093.
Da Cruz F., Chevoir F., Roux J.N. and Iordanoff I. (2004). “Macroscopic friction of dry granular materials”. Tribology Series 43: 53-61
Da Cruz F., Emam S., Prochnow M., Roux J.N. and Chevoir F. (2005). “Rheophysics of dense granular materials: Discrete simulation of plane shear flows”. Phys. Rev. E 72: 021309.
Dong, G., Wang, G., Ma, X. and Ma, Y., (2010). “Harbor resonance induced by subaerial landslide-generated impact waves”. Ocean Eng. 37: 927–934.
Forterre, Y. and Pouliquen, O. (2006). “Granular flow. La Relativit´e g´en´erale aujourd’hui”. Vol. IX, pp. 1-40.
Fu, L. and Jin, Y. (2015). “Investigation of non-deformable and deformable landslides using mesh-free method”. Journal of Ocean Engineering 109, 192-206.
Gotoh, H., Shibahara, T. and Sakai, T. (2001). “Sub particle turbulence model for the MPS method Lagrangian flow model for hydraulic engineering”. Computational Fluid Dynamics Journal. 9(4): 331-347.
Heinrich, P., (1992). “Nonlinear water waves generated by submarine and aerial landslides”. J. Waterw. Port Coast. Ocean Eng. 118 (3): 249–266.
Heller, V. and Hager, W.H., (2011). “Wave types of landslide generated impulse waves”. Ocean Eng. 38: 630–640.
Heller, V. and Spinneken, J., (2013). “Improved landslide-tsunami prediction: effects of block model parameters and slide model”. J. Geohys. Res. C 118: 1489–1507.
Jin. Y., Guo. K., Tai. Y. and Lu. Ch. (2016). “Laboratory and numerical study of the flow field of subaqueous block sliding on a slope”. Ocean Engineering. 124: 371-383.
Jop, P. Forterre and Y. Pouliquen, O. (2006). “Constitutive law for dense granular flows”. Nature 441: 727–730.
Jop. P. (2015). Rheological properties of dense granular flows. Compters Rendus Physique. 16(1): 62-72.
Khayyer, A. and Gotoh, H. (2008). “Development of CMPS method for accurate water surface tracking in breaking waves”. Coastal Engineering Journal, 50(02), 179– 207.
Kondo, M. and Koshizuka, S. (2011). “Improvement of stability in moving particle semi-implicit method”. International Journal for Numerical Methods in Fluids, 65(6): 638-654.
Koshizuka, S., Nobe, A. and Oka, Y. (1998). “Numerical analysis of breaking waves using the moving particle semi-implicit method”. International Journal of Numerical Methods in Fluids, 26(7): 751-769.
Koshizuka, S., Tamako, H., and Oka, Y. (1995). “A particle method for incompressible viscous flow with fluid fragmentation”. Comput. Fluid Dyn. J., 4(1), 29–46.
Lagree. P. Y., Staron. L. and Popinet. S. (2011). “The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a μ(I)-rheology”. J. Fluid Mech. 686: 378_408.
Liu, G. R., and Liu, M. B. (2003). Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing.
Liu, J., Koshizuka, S. and Oka, Y. (2005). “A hybrid particle-mesh method for viscous, incompressible, multiphase flows”. Journal of Computational Physics, 202(1): 65-93.
Midi, G.D.R. (2004). “On dense granular flows”. Eur. Phys. J. E 14: 341–365.
Minatti, L. and Paris, E. (2015). “A SPH model for the simulation of free surface granular flows in a dense regime”. Journal of Applied Mathematical Modelling 39, 363-382.
Savage, S.B. and Hutter, K. (1989). “The motion of a finite mass of granular material down a rough incline”. Journal of Fluid Mechanics, 199, pp. 177 – 215.
Shakibaeinia, A. and Jin, Y.C. (2010). A weakly compressible MPS method for modeling of open-boundary free-surface flow. Int. J. Numer Methods Fluids, 63(10), pp. 55-67.
Shakibaeinia, A. and Jin, Y.C. (2012a). “Lagrangian multiphase modeling of sand discharge into still water”. Advances in Water Resources, 48:55-67.
Shao, S.D. and Gotoh, H. (2005). “Turbulence particle models for tracking free surfaces”. J. of Hydraulic Research, 43(3): 276-289.
Zhao, T. (2014). “Investigation of landslide-induced debris flows by the DEM and CFD”. PhD Thesis, University of Oxford, UK.
Zweifel, A., Hager, Willi H. and Minor, H., (2006). “Plane impulse waves in reservoirs”. J. Waterway Port Coast. Ocean Eng. 132(5): 358–368.
Zweifel, A., Zuccalà, D. and Gatti, D., (2007). “Comparison between computed and experimentally generated impulse waves”. J. Hydraul. Eng. 133(2): 208–216.