Experimental Investigation of the Bed Sill Effect on the Temporal Evolution of Local Scour Hole around an Inclined Pier Group on a Foundation

Document Type : Research Article


One of the vital structures in the land transportation cycle is the bridge. Constructing this structure over the rivers results in an intensified 3-D flow pattern around piers which in turn causes the bed sediments to be eroded and scoured from the immediate vicinity of the pier and its foundation. It is likely that the bridge will fail particularly during a high flood event, if the foundations or piles are not constructed deep enough. Hence, besides the previous works on the study of the factors affecting scour at bridge piers, considering appropriate countermeasures against bridge scour is of primary importance. In the present study, the effect of bed sill location on the temporal evolution of the scour around an inclined pier group was experimentally investigated under various hydraulic conditions and foundation levels. A physical model of pier group with two inclined 2.5x3.5 cm rectangular piers and 28 degree inclination angle constructed on a 10x16 cm foundation was considered in the experiments. The experiments were carried out with different locations of sill (front, middle, and rear of the foundation), various flow velocities and depths, and normalized installation levels of the foundation (distance of the top of the foundation to the bed surface normalized by the pier width) equal to -1.0, -0.5, 0.0, and +1.0. The results of the present study indicate that the bed sill location has a significant effect on the temporal evolution of the depth of scour hole. Based on the comparisons made in this study, it is found that the installation of the sill in front of the foundation has a better performance in the scour mitigation rather than other arrangements. It is also concluded that the average reduction in the scour depth in all foundation installation levels is equal to 22, 18, and 15 percent for front, middle, and rear sill configurations, respectively.


اسمعیلی ورکی، م. موسی پور، س. و حاتم جعفری، م. (1392). "بررسی آزمایشگاهی تأثیر شرایط هندسی و هیدرولیکی بر مشخصات آبشستگی اطراف گروه پایه کج با فونداسیون". مجله پژوهش آب ایران، سال هفتم، شماره سیزده، ص.ص. 151-141.
حیدرپور، م. افضلی مهر، ح. و نادری بنی، م. (1382). "کنترل و کاهش آبشستگی موضعی در پایه­های پل با مقاطع مستطیلی گرد گوشه با استفاده از شکاف." علوم و فنون کشاورزی و منابع طبیعی، سال هفتم، شماره سوم، ص.ص. 151-141.
حسینی، س. ح. حسین زاده دلیر، ع. و ارونقی، ه. (1389). "کنترل آبشستگی در اطراف پایه­های مستطیلی با کاربرد صفحات مستغرق و طوق". نهمین کنفرانس هیدرولیک ایران، آبان ماه 1389، دانشگاه تربیت مدرس.
دبردانی، الف. صانعی، م. و قربانی، ب. (1389). "بررسی تأثیر صفحات مستغرق دو گانه با کول­های متفاوت در کاهش آبشستگی موضعی پایه پل با استفاده از نمودار زمانی". نهمین کنفرانس هیدرولیک ایران، آبان ماه 1389، دانشگاه تربیت مدرس.
رازی، س. حسین زاده دلیر، ع. سلمانی، ف. و فرسادی زاده، د. (1389). "تأثیر موقعیت آبپایه در کاهش آبشستگی در پایه­های استوانه­ای". نهمین کنفرانس هیدرولیک ایران، آبان ماه 1389، دانشگاه تربیت مدرس.
کشاورزی، ع. سیستانی، ب. و رنجبر زاهدانی، م. (1388). "بررسی تأثیر سازه­های منحرف کننده جریان بر روی آبشستگی موضعی در اطراف پایه­های پل­های استوانه­ای". هشتمین کنگره بین المللی مهندسی عمران، اردیبهشت 1388، دانشگاه شیراز.
Ataie-Ashtiani, B., Baratian-Ghorghi, Z., and Beheshti, A. A. (2010). "Experimental investigation of clear-water local scour of compound piers". J. Hydraul. Eng., 136(6): 343–351.
Breusers, N. H. C. and A. J. Raudkivi. (1991). Hydraulic structure design manual: scouring. Vol. 2, Balkema, Rotterdam, Netherlands.
Cardoso, A. H., and Bettess, R. (1999). "Effects of time channel geometry on scour at bridge abutment". ASCE, J. Hydraul. Eng., 125(4): 388–399.
Chang,W. Y., Lai, J. S., and Yen, C. L. (2004). "Evolution of scour depth at circular bridge piers". J. Hydraul. Eng., 130(9): 905–913.
Coleman, S. E. (2005). "Clear water local scour at complex piers". ASCE, J. Hydraul. Eng., 131(4), 330–334.
El-Razek, M.A., El-Motaleb, M.A. and Bayoumy, M. (2010). "Scour reduction around bridge piers using internal opening through the pier". Alexandria Engineering Journal, Vol. 42, No. 2, 241-248.
Grimaldi, C., Gaudio, R., Calomino, F. and Cardoso, A., (2009). "Control of scour at bridge piers by a downstream bed sill". ASCE, J. Hydraul. Eng., 135(1): 13–21.
Kothyari, U. C., Garde, R. J., and Ranga Raju, K. G. (1992b). "Temporal variation of scour around circular bridge piers". ASCE, J. Hydraul. Eng., 118(8): 1091–1106.
Lagasse, P.F., Clopper, P.E, Pagán-Ortiz, J.E, Zevenbergen, L.W., Arneson, L.A., Schall, J.D., and Girard, L.G. 2009. "Bridge scour and stream instability countermeasures: experience, selection, and design guidance". FHWA, Hydraulic Engineering Circular No. 23.
Lee, s. and sturm, T.W. (2009). "Effect of sediment size scaling on physical modeling of bridge pier scour". ASCE, J. Hydraul. Eng., 135(10): 793-802.
Lu, J.-Y., Shi, Z.-Z., Hong, J.-H., Lee, J.-J., and Raikar, V. K. (2011). "Temporal variation of scour depth at non uniform cylindrical piers". ASCE, J. Hydraul. Eng., 137(1): 45–56.
Mashahir, M., Zarrati, A., and Mokallaf, E. (2010). "Application of riprap and collar to prevent scouring around rectangular bridge piers". ASCE, J. Hydraul. Eng., 136(3): 183–187.
Masjedi, A., Bejestan, M. and  Esfandi, A. (2010). "Reduction of local scour at a bridge pier using collar in a 180 degree flume bend". Journal of Applied Sciences, 10 (2):124-131.
Melville, B.W. and Raudkivi, A. J. )1996(. "Effect of foundation geometry on bridge pier scour". ASCE, J. Hydraul. Eng., 122 (4): 203-209.
Melvill, B.W. and Chiew, Y.M. (1999). Time scale for local scour at bridge piers. ASCE, J. Hydraul. Eng., 125 (1): 59-65.
Melville, B.W. and Sutherland, A.J (1988). "Design method for local scour at bridge piers". ASCE, J. Hydraul. Eng., 114(10): 1210-1226.
Mia, M. F., and Nago, H. (2003). "Design method of time-dependent local scour at circular bridge pier". J. Hydraul. Eng., 129(6): 420–427.
Novak, P. Guinot, V., Jeffrey, A., and Reeve, D.E. (2010). Hydraulic modeling-an introduction: principles, methods and applications. CRC Press; First Edition, 616 p.
Oliveto, G., and Hager, W. H. (2002). "Temporal evolution of clear-water pier and abutment scour". ASCE, J. Hydraul. Eng., 128(9): 811–820.
Oliveto, G., and Hager, W. H. (2005). "Further results to time-dependent local scour at bridge elements". ASCE, J. Hydraul. Eng., 131(2): 97–105.
Pagliara, S., Carnacina, L., and Cigni, F. (2010). "Sills and gabions as countermeasures at bridge pier in presence of debris accumulations". Journal of Hydraulic Research Vol. 48(6): 764–774.
Raudkivi, A.J. and Ettema, R. (1983). "Clear-water scour at cylindrical piers". ASCE, J. Hydraul. Eng., 109(3): 339-350.
Sheppard, D. M., Odeh, M., and Glasser, T. (2004). "Large scale clear water local pier scour experiments". ASCE, J. Hydraul. Eng., 130(10): 957-963.
Simarro. G, Cristina M., Fael. S, and Cardoso., A. H. (2011). "Estimating equilibrium scour depth at cylindrical piers in experimental studies". ASCE, J. Hydraul. Eng., 137(9): 1089-1093.
Yanmaz, A. M. (2006). "Temporal variation of clear-water scour at cylindrical bridge piers". Can. J. Civil. Eng., 33: 1098–1102.
Zarrati, A., Nazariha, M., and Mashahir, M. (2006). "Reduction of local scour in the vicinity of bridge pier groups using collars and riprap". ASCE, J. Hydraul. Eng., 132(2): 154–162.