مدلسازی انتقال محلول در رودخانه حاوی نواحی نگهداشت موقت با استفاده از روش شبکه مدارهای الکتریکی معادل

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 دانشجوی دکترای سازه‌های آبی، گروه مهندسی سازه‌های آبی، دانشگاه تربیت مدرس ، تهران، ایران.

2 استاد گروه مهندسی سازه های آبی دانشگاه تربیت مدرس

3 استاد گروه مهندسی برق-الکترونیک، دانشگاه تربیت مدرس، تهران، ایران.

4 استاد گروه فیزیک کاربردی، دانشگاه پلی تکنیک کارتاخنا، کارتاخنا، اسپانیا.

چکیده

با توجه به آثار زیان‌بار آلاینده‌های ورودی به منابع آبی که ناشی از فعالیت‌های انسانی می‌باشد، انجام مطالعات در زمینه پیش‌بینی غلظت این آلاینده‌ها به منظور انجام اقدامات مقتضی برای کنترل، ضروری به نظر می‌رسد. بدین منظور مدل‌های انتقال جرم متعددی برای پیش‌بینی غلظت محلول در آبراهه‌های طبیعی ارائه شده‌اند. این مدل‌ها به ندرت دارای حل تحلیلی بوده و عمدتاً با استفاده از روش‌های عددی حل می‌شوند. در این تحقیق روشی تحت عنوان روش شبیه‌سازی مداری (NSM) که بر پایه آنالوژی موجود بین معادلات دیفرانسیلی حاکم بر پدیده‌های هیدرودینامیکی و الکتریکی است، معرفی شده و کاربرد آن در حل مدل‌های مذکور مورد بررسی قرار گرفته است. مراحل اجرای این روش شامل استخراج مدل الکتروآنالوژیکال و طراحی مدار الکتریکی معادل و در نهایت شبیه‌سازی مدل مداری با استفاده از کد مناسب در یک نرم‌افزار تحلیل مدارهای الکتریکی است. در این مقاله ابتدا NSM با مدلسازی حالتی از معادله انتقال نگهداشت موقت که حل تحلیلی دارد، صحت‌سنجی شده و سپس دقت و کارایی آن در مقایسه با روش عددی احجام محدود (FVM) در حل مدل نگهداشت موقت تودرتو، برآورد شده‌است. نتایج مدلسازی‌ها حاکی از مطابقت بسیار عالی بین دو روش NSM و FVM با شاخص‌های خطای نزدیک به صفر است. حال آن‌که پیاده‌سازی شرایط مرزی در NSM ساده‌تر بوده و انعطاف‌پذیری بالاتری دارد. به علاوه، زمان محاسباتی مورد نیاز NSM برای مثال‌های مورد مطالعه کمتر از زمان محاسباتی مورد نیاز FVM می‌باشد. بنابراین NSM به عنوان جایگزینی دقیق و کارا برای روش‌های عددی در حل معادلات انتقال توأم یک‌بعدی پیشنهاد می‌شود.

کلیدواژه‌ها


Ataieyan, A., Ayyoubzadeh, S. A. and Nabavi, A. (2016). Introduction of Network Simulation Method and investigation of its feasibility in simulation of contaminant transfer in a river. 15th National Conference of Hydraulics, Qazvin, Iran. (In Persian)
Bellver, F. G., Garratón, M. C., Meca, A. S., López, J. A. V., Guirao, J. L. and Fernández-Martínez, M. (2017). Applying the Network Simulation Method for testing chaos in a resistively and capacitively shunted Josephson junction model. Results in physics, 7, 813-822.
Bencala, K. E., McKnight, D. M. and Zellweger, G. W. (1990). Characterization of transport in an acidic and metal‐rich mountain stream based on a lithium tracer injection and simulations of transient storage. Water Resources Research, 26(5), 989-1000.
Bencala, K. E. and Walters, R. A. (1983). Simulation of solute transport in a mountain pool‐and‐riffle stream: A transient storage model. Water Resources Research, 19(3), 718-724.
Bottacin-Busolin, A., Marion, A., Musner, T., Tregnaghi, M. and Zaramella, M. (2011). Evidence of distinct contaminant transport patterns in rivers using tracer tests and a multiple domain retention model. Advances in water resources, 34(6), 737-746.
Briggs, M. A., Gooseff, M. N., Arp, C. D. and Baker, M. A. (2009). A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage. Water Resources Research, 45(4).
Cánovas, M., Alhama, I., Trigueros, E. and Alhama, F. (2015). Numerical simulation of Nusselt-Rayleigh correlation in Bénard cells. A solution based on the network simulation method. International Journal of Numerical Methods for Heat & Fluid Flow, 25(5), 986-997.
Caravaca, M., Sanchez-Andrada, P., Soto, A. and Alajarin, M. (2014). The network simulation method: a useful tool for locating the kinetic–thermodynamic switching point in complex kinetic schemes. Physical Chemistry Chemical Physics, 16(46), 25409-25420.
Chabokpour, J., Minaei, O. and Daneshfaraz, R. (2017). Investigation of longitudinal dispersion coefficients of nonreactive contaminants in porous media. Iranian Journal of Hydraulics, 12(2), 1-12. (In Persian)
Choi, J., Harvey, J. W. and Conklin, M. H. (2000). Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams. Water Resources Research, 36(6), 1511-1518.
Del Cerro Velázquez, F., Gómez‐Lopera, S. A. and Alhama, F. (2008). A powerful and versatile educational software to simulate transient heat transfer processes in simple fins. Computer Applications in Engineering Education, 16(1), 72-82.
Elder, J. W. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of fluid mechanics, 5(4), 544-560. Abbott, M. B., Price, W. A. (Eds.). (1993). Coastal, estuarial and harbour engineer's reference book. CRC Press.
Garcia-Hernandez, M. T., Castilla, J., González-Fernández, C. F. and Horno, J. (1997). Application of the network method to simulation of a square scheme with Butler-Volmer charge transfer. Journal of Electroanalytical Chemistry, 424(1-2), 207-212.
González-Fernández, C. F., García-Hernández, M. T. and Horno, J. (1995). Computer simulation of a square scheme with reversible and irreversible charge transfer by the network method. Journal of Electroanalytical Chemistry, 395(1-2), 39-44.
Horno Montijano, J. (2002). Network simulation method. Research Signpost.
Kazezyılmaz-Alhan, C. M. (2008). Analytical solutions for contaminant transport in streams. Journal of hydrology, 348(3-4), 524-534.
Kerr, P. C., Gooseff, M. N. and Bolster, D. (2013). The significance of model structure in one-dimensional stream solute transport models with multiple transient storage zones–competing vs. nested arrangements. Journal of hydrology, 497, 133-144.
Manteca, I. A., Meca, A. S. and López, F. A. (2014). FATSIM‐A: An educational tool based on electrical analogy and the code PSPICE to simulate fluid flow and solute transport processes. Computer Applications in Engineering Education, 22(3), 516-528.
Meddah, S., Saidane, A., Hadjel, M. and Hireche, O. (2015). Pollutant dispersion modeling in natural streams using the transmission line matrix method. Water, 7(9), 4932-4950.
Moya, A. A. and Horno, J. (1999). Application of the network simulation method to ionic transport in ion-exchange membranes including diffuse double-layer effects. The Journal of Physical Chemistry B, 103(49), 10791-10799.
Nordin, C. F. and Troutman, B. M. (1980). Longitudinal dispersion in rivers: The persistence of skewness in observed data. Water Resources Research, 16(1), 123-128.
O’Connor, B. L., Hondzo, M. and Harvey, J. W. (2009). Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration. Journal of Hydraulic Eng., 136(12), 1018-1032.
Runkel, R. L. (1998). One-dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers.
Serna, J., Velasco, F. J. S., and Meca, A. S. (2014). Application of network simulation method to viscous flows: The nanofluid heated lid cavity under pulsating flow. Computers & Fluids, 91, 10-20.
Socolofsky, S. A. and Jirka, G. H. (2005). Special topics in mixing and transport processes in the environment. Engineering–Lectures. 5th Edition. Texas A&M University, 1-93.
Sofiev, M. (2002). Extended resistance analogy for construction of the vertical diffusion scheme for dispersion models. Journal of Geophysical Research: Atmospheres, 107(D12), ACH-10.
Thome, C. R. and Zevenbergen, L. W. (1985). Estimating mean velocity in mountain rivers. Journal of Hydraulic Engineering, 111(4), 612-624.
Trévisan, D. and Periáñez, R. (2016). Coupling catchment hydrology and transient storage to model the fate of solutes during low-flow conditions of an upland river. Journal of Hydrology, 534, 317-325.
Tuinenga, P. W. (1988). SPICE: a guide to circuit simulation and analysis using PSpice. Prentice Hall PTR.
Versteeg, H. K. and Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson Education.
Zueco, J., Bég, O. A. and Ghosh, S. K. (2010). Unsteady hydromagnetic natural convection of a short-memory viscoelastic fluid in a non-Darcian regime: network simulation. Chemical Engineering Communications, 198(2), 172-190.
Zueco, J. and Campo, A. (2006). Network model for the numerical simulation of transient radiative transfer process between the thick walls of enclosures. Applied Thermal Engineering, 26(7), 673-679.
Zueco, J. and López-Ochoa, L. M. (2013). Network numerical simulation of coupled heat and moisture transfer in capillary porous media. International Communications in Heat and Mass Transfer, 44, 1-6.
Borland C++ Builder, Version 6.0 [Build 10.155], Copyright © 1983-2002, Borland Software Corporation. Portions copyright 1996-2002 toolsfactory GmbH.
MATLAB, Version R2015a (8.5.0.197613), copyright © 1984-2015, MathWorks, Inc.
PSpice, Version 9.2, copyright © 1986-2000, Cadence Design Systems, Inc.