Evaluation of Eco-hydrology-hydraulics Methods for Environmental Flows in Rivers (Case Study: Nazloo River, Urmia Lake Basin)

Document Type : Research Article

Authors

1 MSc. in Water Resources Engineering, Department, Urmia university, Urmia, Iran

2 Associate Professor of River Engineering, Water Eng. Department, Urmia university, Urmia, Iran

Abstract

Development of irrigation network and overuse of water is the main cause of desiccation of the internationally recognized Urmia Lake, Iran, in the last decades. In the restoration planning of the Urmia Lake, the allocation of environmental flows for the main rivers and security of water flows along these rivers are essential. The main aim of the present study was to determine the monthly distribution of the rivers environmental flows. This paper presents the ecological requirements of a typical river, the Nazloo River in the west coast of the Urmia Lake, using eco-hydrology-hydraulics methods. An ecological integrated method (Habitat Similitudes) was used for sustaining targeting species in the river system (i.e. Siah, SiahKoli and Zardak fishes). The Water Quality method (Q- relationship) was considered for species tolerance to pollutants. The flow predictions from most of the hydrological methods are higher than the river's natural flow capacity during low-flow period (July to February). The results from the hydraulic method (Maximum Curvature) have limited flexibilities to present reasonable flows during different months of the year. The concentrations of phosphate are also found to be critical to the targeting fish species. In this study, the integration of "Habitat Similitude" and "Water Quality" methods, considering the potential of the natural flows and the hydraulic requirements of the riverine species, would offer the monthly environmental flows of the river in a more realistic way. The results indicate that in order to maintain the Nazloo River at acceptable environmental condition, water flows ranging from 0.8 m3/s (in September) to 8.0 m3/s (in April) are to be provided along the river towards the Urmia Lake, in Iran.

Keywords


احمد پور، ظ. (1391). شاخص‌های رژیم متغیر هیدرولوژیکی در ارزیابی زیست محیطی رودخانه‌ها، پایان‌نامه کارشناسی ارشد، مهندسی منابع آب، گروه مهندسی آب، دانشگاه ارومیه، ارومیه، ایران، 188 صفحه.
استاندارد صنعت آب و آبفا. (1388). پیش‌نویس راهنمای تعیین حداقل آب مورد نیاز اکوسیستم‌های آبی، وزارت نیرو، معاونت امور آب و آبفا، دفتر مهندسی و معیارهای فنی آب و آبفا، ص. 113.
مهندسین مشاور آبساران (1389 و 1379). مطالعات سد مخزنی نازلو، حوضه دریاچه ارومیه، ص. 457.
عبدولی ا.، نادری م. (1387). تنوعزیستیماهیان، انتشارات دانشگاه تهران، تهران، ص. 237.
نظری دوست ع. (1385). تدوین متدولوژی، دستورالعمل و برنامه نرم­افزاری جهت محاسبه حداقل نیاز آبی اکوسیستم­های تالابی. رساله دکترا، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران.
یاسی م. (1392). خطاهای رایج زیست محیطی در ساخت مخازن سد‌ها و راهکارهای ارزیابی و اختصاص سهم جریان زیست محیطی در رودخانه‌ها. گزارش مستند‌سازی، کمیته ملی سدها و انتقال آب‌های فرامرزی ایران.
Anonymous. (2005). The science of instream flows: a review of the Texas instream flow program. Committee on review of methods for establishing instream flows for Texas rivers. National Research Council, Texas, p. 162.
Code, B. (1995). Freshwater fishes of Iran. Institute of landscape ecology of the academy of sciences of the Czech Republic, Czech Republic, p. 200.
Dyson, M., Bergkamp, G. and Scanlon, J. (2003). The essentials of environmental flows. Gland, Switzerland and Cambridge, UK: IUCN, p. 118.
Gippel, CJ. and Stewardson, M.J. (1998). Use of wetted perimeter in defining minimum environmental flows. Regulated Rivers: Research and Management 14, pp. 53-67.
Hughes, D.A. and Hannart, P. (2003). "A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa". Journal of Hydrology 270(3–4), pp. 167–181.
Hughes, D.A. and Smakhtin, V.U. (1996). "Daily flow time series patching or extension: a spatial interpolation approach based on flow duration curves". Journal of Hydrological Sciences 41(6), pp. 851–87.
Jowett, I.G. (1997). Instream flow methods: A comparison of approaches. Regulated Rivers: Research & Management 13, pp. 115-127.
Marchand, M.D. (2006). Environmental flow requirements for rivers: An integrated approach for river and coastal zone management. Report No. Z2850 WL|Delft Hydraulics.
Metcalf, Eddy. (1978). Wastewater Engineering Treatment Disposal Reuse, 2nd ed. McGraw-Hill, New York.
Poff, N., Richter, B., Arthington, A., Bunn, S., Naiman, R., Kendy, E. and Acreman, M. (2010). "The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards". Freshwater Biology 55, pp. 147–170.
Shaeri Karimi, S., Yasi, M. and Eslamian, S. (2012). "Use of hydrological methods for assessment of environmental flow in a river reach". International Journal of Environmental Science and Technology 9, pp. 549-558.
Shaeri Karimi S., Yasi M., Cox J.P. and Eslamian S. (2014). Environmental flow. in Chapter 63, Vol. 3: Environmental Hydrology and Water Management, "Handbook of Engineering Hydrology", Taylor and Francis Group, LLC, USA.
Shokoohi, A. and Amini, M. (2014). "Introducing a new method to determine rivers’ ecological water requirement in comparison with hydrological and hydraulic methods". International Journal of Environmental Science and Technology 11(3), pp. 747-756.
Shokoohi, A. and Hong, Y. (2011). Using hydrologic and hydraulically derived geometric parameters of perennial rivers to determine minimum water requirements of ecological habitats (Case Study: Mazandaran Sea Basin, Iran). Hydrological Processes 25, pp. 3490-3498.
Smakhtin, V.U. and Anputhas, M. (2006). An assessment of environmental flow requirements of Indian river basins. IWMI Research Report 107. International Water Management Institute, Colombo.
Smakhtin, VU. (2001). "Low flow hydrology: a review", Journal of Hydrology 240, pp. 147-186.
Smakhtin, VU. and Eriyagama, N. (2008). "Developing a software package for global desktop assessment of environmental flows". Journal of Environmental Modeling & Software 23, pp. 1396-1406.
Tennant, D.L. (1976). "Instream flow regimens for fish, wildlife, recreation and related environmental resources". Fisheries 1(4), pp. 6-10.
Tharme, R.E. (2003). "A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers". River Research and Applications 19, pp. 397-441.
Vadas, R.L. and Orth, D.J. (2000). "Habitat use of fish communities in a Virginia stream". Environmental Biology of Fishes 59(3), pp. 253-269.
Waddle, T. (2001). PHABSIM for Windows: User's Manual and Exercise: Fort Collins, CO, U.S, Geological Survey, p. 288.
Zhang Z., Dehoff A.D., Pody R.D. and Balay J.W. (2009). "Detection of streamflow change in the Susquehanna River Basin", Water Resources Management 24 (10), pp. 1947-1964.