Experimental Investigation of Flow Hydraulic over 3 Model of Fuse gate Spillways (WLH, Straight, and Straight with Inclined Side view) with Increasing Canal Slope

Document Type : Research Article

Authors

1 M.Sc. Student of Water Structures, Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Babol, Iran

2 Assistant professor of Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Babol, Iran

Abstract

Fuse gate is one of the spillway types that according to the plan view have two models of straight and labyrinth crest. Labyrinth crest fuse gates with increasing crest length, discharge capacity and storage of water in reservoir, can prevent flooding of upstream land by reducing water level above the structure. They have three different types: Narrow Low Head (NLH), Wide Low Head (WLH), and Wide High Head (WHH). In this study, the effect of increasing canal slope on discharge coefficient in 3 models of fuse gate: WLH, Straight, and Straight with Inclined Side view was investigated. These models were made of Plexiglas with a bucket height of 16.7 cm. Tests were made in a sloping experimental canal with a length of 12 m, width of 0.5 m, and height of 0.8 m. The results showed that the discharge coefficient of fuse gate spillway depends on h/H. In WLH model of fuse gate, the discharge coefficient reduces as parabolic with increasing discharge and in Straight Fuse gates, the discharge coefficient in the form of linear has increasing, constant and decreasing depending on the slopes. In all 3 models with increasing slope, the downstream water depth of spillway reduces and discharge coefficient value increases. Model comparison showed that in a constant h/H, the Straight spillway with Inclined Side view has higher discharge coefficient and stores the maximum volume of water in the reservoir. It was also found that at a constant discharge, the WLH model has lower upstream water level. Finally, the discharge coefficient equation for straight and labyrinth fuse gates were obtained in the form of linear and power functions. The statistical analysis indicated high accuracy of the equations.

Keywords


بیرامی، م.ک. (1387). سازه­های انتقال آب. انتشارات دانشگاه صنعتی اصفهان، چاپ هفتم، ص. 462.
حسینی، م. و ابریشمی، ج. 1388. هیدرولیک کانال­های باز. انتشارات آستان قدس رضوی، چاپ بیستم، ص. 613.
رضایی، م. (1391). رابطه دبی-اشل در سرریز کنگره­ای مستطیلی. پایان­نامه کارشناسی­ارشد، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ص. 60.
کریمیان علی آبادی، ح.، محمودیان شوشتری، م.، و کریمیان علی آبادی، ا. (1388). "مدل­سازی و ارزیابی عملکرد سرریز مجهز به فیوز گیت". دومین همایش ملی سدسازی، دانشگاه آزاد اسلامی واحد زنجان.
کریمیان علی آبادی، ح.، ملکی­پور، ب.، و غفاری، م. (1390). "طراحی و شبیه­سازی سیستم فیوزگیت و مقایسه عملکرد آن با دریچه­های قطاعی به منظور افزایش ارتفاع سدها". ششمین کنگره ملی مهندسی عمران، دانشگاه سمنان.
نیک­صفت، غ.ر. (1380). "تئوری و کاربرد مدل­های هیدرولیک در طراحی سازه­های آبی". انتشارات وزارت نیرو، کمیته ملی سدهای بزرگ ایران، نشریه شماره 41، ص. 403.
Afshar, A., Marino, M.A., and Jalali, M.R. (2003). "Optimum design of Fusegates; reconciling dam safety and increasing storage capacity", International Journal of Civil Engineering, 1(1), pp. 28-32.
Afshar A. and Takbiri, Z. (2009). "Optimal design and operation of Fuse-Gates considering water loss due to gates tilting", Environmental and Water Resources, ASCE, pp. 3053-3060.
Afshar, A. and Takbiri, Z. (2012). "Fusegates selection and operation: simulation- optimization approach", Journal of Hydro Informatics, 14(2), pp. 464-477.
Barcouda, M., Cazaillet, O., Cochet, P., Jones, B.A., Lacroix, S., Laugier, F., Odeyer, C., and Vigny, J.P. (2006). Cost effective increasing in storage and safety of most dams using Fusegates or P.K. weirs, Commission International Des Grands Barrages.
Chevalier, S., Culshaw, S.T., and Fauquez, S.T. (1996). The hydroplus Fusegate system - four years on, the réservoir as an asset. Thomas Telford, London, pp. 32-40.
De Simone, C., Jafari, N., Dasi, B., and Abdolahi, M. (2012). "Study on Fusegate as a phenomenon gates Sarough water reservoir dam in west Azarbaijan- Iran", The First International Conference on Dams & Hydropower, Tehran, Iran.
Falvey, H.T., and Treille, P. (1995). "Hydraulics and design of Fusegates", Journal Hydraulic Engineering, ASCE, 121(7), pp. 512-518.
Falvey, H.T. (2003). Hydraulic design of labyrinth weirs, ASCE press, Reston, Virginia, USA. P. 162.
John Hite, Jr. and Mifkovic, Ch. (2000). Increasing reservoir storage or spillway capacity using Fusegate, US Army Corps of Engineers.
Khatsuria, R.M. (2000). "The changing contexts in the design of spillways An Overview", ISH Journal of Hydraulic Engineering, 6(2), pp. 26-39.
Kobus, H. (1980). Hydraulic modelling, German Association for Water Resources and Land Improvement, Bonn. Bulletin No. 7.
Novak, P., Moffat, A.I.B., Nalluri, C., and Narayanan, R. (2007). Hydraulic structures, Published in the USA and Canada by Taylor & Francis, London and New York, p. 700.
Novak, P., Guinot, V., Jeffrey, A., and Reeve, D.E. (2010). Hydraulic modelling- an introduction,
Spon Press, an Imprint of Taylor & Francis, London and New York, p. 599.
Rehbock, T., (1929). "Water measurement with sharp edge strength about falling resist (in German)", Journal of the Association of German Engineers, pp. 73- 343.
Rouse. H. (1960). Elementary fluid mechanics. John Wylie & Sons. New York. N.Y.