Numerical simulation of porous spur dyke using Flow 3D software

Document Type : Research Article


1 Civil Engineering Group, Engineering Department, Hakim Sabzevari University

2 Islamic Azad University, Mashad

3 Islamic Azad University, Mashhad


In the present research, effects of a porous spur-dyke on the hydraulic characteristics of the flow in an open-channel have been numerically studied through non-linear Forschheimer model. The numerical simulations were performed in Flow3D package using RNG k-epsilon turbulence closure model. During simulations of the porous spur-dyke, suitable Friesheimer non-linear coefficients were determined for various cases with the sensitivity analysis. The sensitivity analysis and comparisons of the numerical results with the results of the physical model showed that most of parameters are completely dependent to Friesheimer non-linear term and the proposed software range for Friesheimer nonlinear coefficient is not suitable. The results showed that by increasing of the porosity of the porous spur dyke, the flow velocity and also the effect area of the maximum velocity will decrease. Also, by increasing of the porosity of the porous spur dyke, the upstream water depth of the spur dyke will decrease and the downstream water depth of the spur dyke will increase. It was also observed that by increasing of the porosity of the porous spur dyke, the maximum value of the velocity decreases and the minimum value of it increases.


اردشیری، م.ا.؛ صانعی، م. و رضایی، ز. (1392) "بررسی آزمایشگاهی اثر طول و فاصله آبشکن نفوذپذیر و غیرمستغرق بر تغییرات دبی آبگیر با زاویه 90 درجه". هفتمین کنگره ملی مهندسی عمران، دانشکده مهندسی شهید نیکبخت، زاهدان.
اسدی، م. و زمردیان، س.م.ع. (1392). "شبیه‌سازی عددی الگوی جریان متلاطم و آبشستگی موضعی بستر در اطراف سری آبشکن قائم و زاویه داربا مدل عددی Flow3D". پایان نامه کارشناسی ارشد رشته سازه­های آبی. دانشگاه شیراز.
اهدایی، پ. و کاشفی پور، س.م. (1394). "بررسی آزمایشگاهی اثر زاویه و نفوذپذیری تک آبشکن بر روی ابعاد چاله آبشستگی در شرایط غیر مستغرق"، علوم و مهندسی آبیاری، 38 (4).
 خسروی مشیزی، م. قدسیان، م. و واقفی، م. (1393). "بررسی آزمایشگاهی الگوی جریان و آبشستگی پیرامون آبشکن T شکل مستغرق در قوس 90 درجه". پایان‌نامه کارشناسی ارشد مهندسی عمران-گرایش هیدرولیک. دانشگاه تربیت مدرس تهران.
عبدالهی درگاه، ص.؛ کریمی، پ.؛ اختری، ع.ا. و حسینی، س.ا. (1393). "برسی عددی اثر نفوذپذیری آبشکن بر میدان سرعت و تنش برشی در قوس 90 درجه با استفاده از نرم‌افزار فلوئنت". اولین کنگره ملی مهندسی ساخت و ارزیابی پروژه­های عمرانی، گرگان.
Ahmed, M., (1951). “Spacing and Projection of Spurs for Bank Protection” Vol. 46, Part I, London.
Azinfar, H., and Kells, J. A. (2008). “Backwater prediction due to the blockage caused by a single, submerged spur dike in an open channel”. Journal of Hydraulic Engineering, 134(8), 1153-1157.
Fei-Yong, C., and Ikeda, S. (1997). “Horizontal separation flows in shallow open channels with spur dikes”. Journal of Hydroscience and hydraulic Engineering, 15(2), 15-30.
Duan, J. G. (2009). “Mean flow and turbulence around a laboratory spur dike”. Journal of Hydraulic Engineering, 135(10), 803-811.
Hirt, C. W., and Nichols, B. (1988). Flow-3D User’s Manual. Flow Science Inc, 107.
Kang, J., Yeo, H., Kim, S., and Ji, U. (2011). “Permeability effects of single groin on flow characteristics”. Journal of Hydraulic Research, 49(6), 728-735.
Michioku, K., Nanjo, M., Haneda, M., Kanda, K., and Li, Z. (2013). “Hydrodynamics and hydromorphology of river structures constructed by natural materials”. In Proc. 6th Intnl. Conf. Water Resources and Environment Research, Water & Environment Dynamics.
Miller, R., Roulund, A., Sumer, B. M., Fredsøe, J., Truelsen, C., and Michelsen, J. (2003). “3-D numerical modelling of flow around a groin”. In 30th International Association of Hydraulic Engineering and Research Congress (IAHR) (pp. 385-392). AUTh.
Peng, J., Kawahara, Y., and Tamai, N. (1996). “Numerical analysis of three-dimensional turbulent flows around submerged groins”. In Managing Water: Coping with Scarcity and Abundance (pp. 244-249). ASCE.
Rajaratnam, N., and Nwachukwu, B. A. (1983). “Flow near groin-like structures”. Journal of Hydraulic Engineering, 109(3), 463-480.
Rajaratnam, N., and Nwachukwu, B. A. (1983). “Erosion near groyne-like structures”. Journal of hydraulic Research, 21(4), 277-287.
Soliman, M. M., Attia, K. M., Talaat, A. M., and Ahmed, A. F. (1996). “Spur dike effects on the river Nile morphology after high Aswan dam”. In Managing Water: Coping with Scarcity and Abundance (pp. 805-810). ASCE.
Tingsanchali, T., and Maheswaran, S. (1990). “2-D depth-averaged flow computation near groyne”. Journal of Hydraulic Engineering, 116(1), 71-86.
Tominaga, A., Ijima, K., and Nakano, Y. (2001). “Flow structures around submerged spur dikes with various relative height”. In Proceedings of the Congress-International Association for Hydraulic Research (pp. 421-427).
Uijttewaal, W. S. J., Lehmann, D. V., and Mazijk, A. V. (2001). “Exchange processes between a river and its groyne fields: Model experiments”. Journal of Hydraulic Engineering, 127(11), 928-936.
Uijttewaal, W. S. (2005). “Effects of groyne layout on the flow in groyne fields: Laboratory experiments”. Journal of Hydraulic Engineering, 131(9), 782-791.
  • Receive Date: 04 July 2018
  • Revise Date: 25 February 2019
  • Accept Date: 16 December 2018
  • First Publish Date: 21 March 2019