Simulation of two-phase Newtonian and non-Newtonian systems using smoothed particle hydrodynamics and herschel-bulkley model

Document Type : Research Article

Authors

1 Yasouj University

2 Semnan University

3 semnan university

Abstract

One of the most important problems, in the field of hydraulic science, is the study of the behavior of sediment particles and the morphology changes in water flows above sediments. In this research, twophase flow of water-sediment is modeled using the fully Lagrangian SPH method in weakly compressible form. One of the features of the SPH method is the ability to model large deformation, the interface between two phases, as well as particle tracing in multiphase models. In this study, the open-source SPHysics2D code is used where pressure is explicitly calculated using the equation of state. In order to investigate the behavior of sediment, the viscoplastic non-Newtonian model of Herschel -Bulkley Papanastasiou (HBP) has been used. Here, the water-sediment interface is modeled using Owen’s equation where a harmonic mean is used for the viscosity. Due to the density difference between phases, a modified method is used for the continuity and momentum equations. Moreover, an experimental data of the granular dam-break was used to validate the viscoplastic model, and also an experimental data of the dam-break over a moveable bed (water-sediment simulation)was utilized to study the performance of the two-phase flow model. The results indicated that the model of the present study has a high potential for simulating water-sediment systems.

Keywords


امیدوار، پ. خیرخواهان، م. و حسینی، خ. (1397). " توسعه روش هیدرودینامیک ذرات هموار برای شبیه­سازی جریان دوفازی آب-رسوب با استفاده از مدل رئولوژیکی μ(I)"، مجله مهندسی مکانیک مدرس، 18(8): 173-182.
ﻓﺮزﯾﻦ، س.؛ حسن زاده، ی.؛ اعلمی، م. ت. و فاتحی، ر. (1393). "توسعه دو روش SPH تراکم ناپذیر به منظور شبیه‌سازی جریان‌های سطح آزاد حاوی رسوب"، مجله مهندسی مکانیک مدرس، 14(12): 103-91.
خیرخواهان، م. و حسینی، خ. (1396). "مدل‌سازی جریان دانه‌ای به کمک مدل رئولوژیکی μ(I) در روش SPH"، نشریه هیدرولیک ایران، 4(12): 55-43.
Colagrossi, A. and Landrini, M. (2003). “Numerical simulation of interfacial flows by smoothed particle hydrodynamics”, J Comput Phys 191:448–475.
Grenier, N. Antuono, M. Colagrossi, A. Le Touze, D. and Alessandrini, B. (2009). “An Hamiltonian interface SPH formulation for multifluid and free surface flows”, J Comput Phys 228:8380–8393.
Fourtakas, G. and Rogers, B.D. (2016). “Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Dynamics (SPH) accelerated with a Graphic Processing Unit (GPU)”. Adv. Water Resour. 92, pp. 186-199.
Fu, L. and Jin, Y.C. (2016). “Improved Multiphase Lagrangian Method for Simulating Sediment Transport in Dam-Break Flows”. ASCE, J. Hydraul. Eng. 142(10): 04016005.
Fu, L. and Jin, Y. (2015). “Investigation of nondeformable and deformable landslides using meshfree method”. Journal of Ocean Engineering, 109: 192-206.
Gomez-Gesteira, M. Crespo, A.J.C. Rogers, B.D. Dalrymple, R.A. Dominguez, J.M. and Barreiro, A. (2012). “Sphysics-Development of a Free-Surface Fluid Solver-Part 1: Theory and Formulations”. Compu Geosci. http://www.Sphysics.org
Khanpour, M. Zarrati, A.R. Kolahdoozan, M. Shakibaeinia, A. and Amirshahi, S.M. (2016). “Mesh-free SPH modeling of sediment scouring and flushing”. J. Computer and fluids. 129, pp. 67-78.
Kheirkhahan, M. and Hosseini, Kh. (2018). “Comparison of the μ(I) and HBP models for simulating granular media”. J. Modern physics C. 29(4), 1850050.
Lajeunesse, E. Monnier, J. and Homsy, G. (2005). “Granular slumping on a horizontal surface”. Phys. Fluids, 17(10), pp. 1-15.
Lucy, L.B. (1977). “A numerical approach to testing the fission hypothesis”, The Astron. J., 82(12), pp.1013-1024.
Monaghan, J.J. (1994). “Simulating free surface flows with SPH”. J. Comput. Phys., 110, pp. 399-406.
Monaghan, JJ. Kos, A. (1999). “Solitary waves on Cretan beach”, J Waterway Port Coast Ocean Eng 125:145–154.
Monaghan, JJ. (2005). “Smoothed Particle Hydrodynamics”, Rep Prog Phys 68:1703–1759.
Morris, J.P. Fox, P.J. and Zhu, Y. (1997). “Modeling low Reynolds number incompressible flows using SPH”, J Comput Phys 136:214–226.
Nikeghbali, P. and Omidvar, P. (2018). “Application of SPH method to breaking and undular tidal bores on a movable bed”, J. Waterway, Port, Coastal, Ocean Eng. (ASCE) 144(2): 04017040.
Omidvar, P. and Nikeghbali, P. (2017). “Simulation of violent water flows over a movable bed using smoothed particle hydrodynamics”, J Mar Sci Technol 22:2, pp. 270-287.
Razavitoosi, S.L. Ayyoubzadeh, S.A. and Valizadeh, A. (2014). “Two-phase SPH modelling of waves caused by dam break over a movable bed”, Int. J., sediment research. 29(3), pp. 344-356.
Rogers, B.D. Dalrymple, R.A. and Stansby, P.K. (2008). “SPH modeling of floating bodies in the surf zone”, In: Proceeding of 31st International Conference on Coastal Engineering (ICCE), Germany, pp. 204215.
Spinewine, B. (2005). “Two-layer flow behaviour and the effects of granular dilatancy in dam-break induced sheet-flow”, PhD thesis, Univerisite´ de Louvain, Belgium.
Szewc, K. (2017). “Smoothed particle hydrodynamics modeling of granular column collapse”. Granular Matter, 19(1), 3, pp. 1-13.
Shakibaeinia, A. and Jin, Y.C. (2011b). “A mesh-free particle model for simulation of mobile-bed dam break”. Advanced Water Resources, Vol. 34, pp. 794-807.
Zhu, H. Kim, Y.D. and De Kee, D. (2005). “Non-Newtonian fluids with a yield stress”, J. Non-Newtonian Fluid Mech. 129, pp. 177–181.