Experimental Study on the Threshold Shear Stress of fine sediments (Case Study: Karkeh Reservoir Dam Sediments)

Document Type : Technical Note


1 Water Resources Research Center

2 Sahrekord University

3 Ferdosi Mashhad University


Understanding the transfer of cohesive sediment is very important for the development and maintenance of dam reservoir and transfer channels in estuaries. Obviously, more data is needed in area for better understanding of the behavior especially rate of erosion of the fine sediment. Thus in this research the sediments of Karkheh dam reservoir have been investigated. For this propose with use circular flume located in Shahrekord university water and soil science laboratory of Water Resources Research Center, trend of concentration of eroded sediments, threshold erosion shear stress and erosion rate for different periods of consolidation (3, 14 and 30 day) have been investigated. The result showed The concentration of eroded sediment varied as a function of consolidation age and shear bed stress. It was also period of consolidation influenced the threshold shear stress of the Karkhe reservoir sediment, which obtained values were 0.16, 0.22, and 0.31 N/m2 for the 3, 14, and 30 day consolidation, respectively. The result showed that the erosion rate is inverse relation with the period of consolidation, so that in the same stresses, the increase of the consolidation period will reduce the erosion rate.


پرهمت. ج.، پرهمت. ر، (1390). تحلیل و بررسی منطقه­ای دبی پایه حوضه های کارستی مطالعه موردی حوضه کرخه، چهارمین کنفرانس مدیریت منابع آب ایران، تهران، دانشگاه صنعتی امیرکبیر.
خواستار بروجنی. م.، صمدی بروجنی، ح. (1391). بررسی خصوصیات هیدرولیکی جریان در فلوم دوار با استفاده از سرعت سنج صوتی (ADV). مجله هیدرولیک ایران. دوره 7، شماره 2. ص‌ص. 75-88.
Amelia V.C.M., Teixeira, C.F.J., Senhorinha. Teixeira, F.C.F.S. (2010). Physical characterization of estuarine sediments in the northern coast of Portugal. Journal of Coastal Research, 26.2: 301-311.
Bui, T.D. (2000). Cohesive Sediment Transport in Natural Streams. Water Resources 2000.
Droppo, I.G. (2009). Biofilm structure and bed stability of five contrasting freshwater sediments. Marine and Freshwater Research. 60: 690-699.
Giardino, A., Ibrahim, E., Adam, S., Toorman, E.A., Monbaliu, J. (2009). Hydrodynamics and Cohesive sediment transport in the Ijzer Estuary, Belgium: case steady. Journal of Waterway, Port, Coastal and Ocean Engineering (ACSE), 135:176-184.
Glasbergen, K. (2014). The Effect of Coarse Gravel on Cohesive Sediment Entrapment in an Annular Flume. presented to the University of Waterloo in fulfillment of the thesis requirement for the  Degree of master of Science In Geography. Waterloo, Ontario, Canada.
Huang, J., Hilldate, R.C., Greiman, B.P. (2006). Erosion and sedimentation manual. U.S. Department of the interior. United States Bureau of Reclamation.
Krestenitis, Y.N., Kombiadou, D.K., Savvidis, Y.G. (2007). Modelling the cohesive sediment transport in marine environment: the case of Themaikos Gulf. Ocean Science, 3:91-104.
Krishnappan, B.G. (2006). Cohesive sediment transport studiesusing a rotating circular flum. The 7th Int. Conf. on Hydroscience and Engineering (ICHE), Sep10-13, Philadelphia ,USA.
Lumborg, U. (2005). Modeling the deposition, erosion, and flux of cohesive sediment through Oresund. Journal of Marine System, 56:179-193.
Mehta, A.J., E.J. Hayter, W.R. Parker, R.B. Krone, and A.M. Teeter (1989). "Cohesive Sediment Transport. I: Process Description," Journal of Hydraulic Engineering, Vol. 115, No. 8, pp. 1076-1 093.
Millar, R.G., and M.C. Quick (1998). "Stable width and depth of gravel bed rivers with cohesive banks," Journal of Hydra~tlicE ngineering, Vol. 124(l O), 1005-10 1 3
Krestenitis, Y.N., Kombiadou, D.K., Savvidis, Y.G. (2007). Modelling the cohesive sediment transport in marine environment: the case of Themaikos Gulf. Ocean Science, 3:91-104.
Lavelle, J. W., Mofjeld, H. O., & Baker, E. T. (1984). An in-situ erosion rate for a fine-grained marine sediment. Journal of Geophysical Research 89, 6543–6552.
Roberts, J, R. Jepsen, D. Gotthard, and W. Lick (1998). "Effects of Particle Size and Bulk Density on Erosion of Quartz Particles," Journal of Hydraulic Engineering, Vol. 124, No. 12, pp. 1261-1267.
Samadi-Boroujeni, H., Fathi-Moghaddam, M., Shafaie-Bajestan, M., Vali-Samani, M.H. (2005). Modelling of sedimentation and self-weight consolidation of cohesive sediments. Sediment and Ecohydraulics Intercoh (Elsevier B.V). 1stEdn. Oxford, UK, ISBN: 978-444-53184-1.
Scully, R.W., Shiffman, R.L., Olsen, H.W. and Ko,H.Y., (1984). Validation of Consolidation Properties of Phosphatic Clay at Very High Void Ratios, ASCE Symposium on Sedimentation/ Consolidation Models, San Francisco.
Stone, M., krishnappan, B.G., Emelko, M.B. (2008). The effect of bed age and shear stress on the particle morphology of eroded cohesive river sediment in an annular flume. Journal of Water Research. 42: 4179–4187.
Wang, Y.H., (2002). The intertidal erosion rate of cohesive sediment: a case study from Long Island Sound. Estuarine, Coastal and Shelf Science, 56: 891-896.
Winterwerp, J. C. van Kestern, W. G. M. van Prooijen, B. (2012). A conceptual framework for shear flow-induced erosion of soft cohesive sediment beds.
Yang, S.S and J.Y. Wang. (1996). Morphogenesis, ATP content and oxytetracycline production by Streptomyces rimosus in solid state cultivation. Journal of Appl. Bacteriol. 80:545-550.
Volume 13, Issue 3 - Serial Number 133
January 2019
Pages 107-115
  • Receive Date: 31 December 2017
  • Revise Date: 01 March 2018
  • Accept Date: 02 March 2018
  • First Publish Date: 22 November 2018