معرفی شرط مرزی دیوار تک‌لایه با استفاده از روش نیمه‌ضمنی ذرات متحرک توسعه یافته

نوع مقاله: مقاله کامل

نویسندگان

1 دانشجوی دکترا سازه‌های هیدرولیکی، بخش مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 استادیار بخش مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

روش نیمه‌ضمنی ذرات متحرک، یک روش کاملاً لاگرانژی است که در آن به هیچ نوع شبکه‌بندی نیاز نبوده و به طور گسترده در مسایل مختلف مهندسی مورد استفاده قرار می‌‌‌‌گیرد. مشخصه‌های جریان نظیر سرعت و فشار به هر ذره اختصاص یافته و ذرات نقش شبکه‌ی محاسباتی را ایفا می‌کنند. شکل اصلی این روش دچار نوسانات فشار بوده و تلاش‌های بسیاری برای کاهش این نوسانات انجام شده است. همچنین این روش به ندرت در شبیه‌سازی مسایل مهندسی با هندسه‌‌های شامل خطوط منحنی به کار رفته است. در این مطالعه روندی برای توسعه روش تراکم‌ناپذیر نیمه‌ضمنی ذرات متحرک پیشنهاد شده است که علاوه بر بهبود فشار، امکان شبیه‌سازی مسایل با هندسه‌های پیچیده شامل خطوط منحنی را فراهم می‌سازد. به منظور صحت‌سنجی روش پشنهادی، مسایل مختلف هیدرولیکی مانند مسئله فشار هیدرواستاتیک و شکست سد به عنوان آزمون‌های معمول و جریان روی سرریز اوجی با مرزهای باز به عنوان آزمون جدید روش پیشنهادی شبیه‌سازی شده‌اند و نتایج به دست آمده، توزیع فشار هموار و نزدیک به مقادیر تئوری یا آزمایشگاهی در دسترس را نشان می‌دهند.

کلیدواژه‌ها


 

Adami, S., X. Y. Hu, and N. A. Adams. (2012) “A generalized wall boundary condition for smoothed particle hydrodynamics”. Journal of Computational Physics Vol. 231, pp. 7057-7075.

Asai, M., Aly, A.M., Sonoda, Y. and Sakai, Y. (2012). “A stabilized incompressible SPH method by relaxing the density invariance condition”. Journal of Applied Mathematics, Article ID 139583, p. 24.

Ataie-Ashtiani, B. and Farhadi, L. (2006), "A stable moving-particle semi-implicit method for free surface flows", Journal of Fluid Dynamics Research, Vol. 38, pp. 241-256.

Ataie-Ashtani, B., Shobeyri, G. and Farhadi, L. (2008). “Modified incompressible SPH method for simulating free surface problems”. Journal of Fluid Dynamics Research, Vol. 40, pp. 637-661.

Barker, Daniel J., Pablo Brito-Parada, and Stephen J. Neethling. (2014). Application of B-splines and curved geometries to boundaries in SPH. International Journal for Numerical Methods in Fluids Vol. 76, pp.51-68.

Chanel, P.G. and Doering, J.C. (2007). “An evaluation of computational fluid dynamics for spillway modelling”. 16th Australasian Fluid Mechanics Conference, Crown Plaza, Gold Coast.

Chatila J. and Tabbara M. (2004).“Computational modeling of flow over an ogee spillway”, Journal of Computers and Structures, Vol. 82, 1805-1812.

Duan, R.Q., Koshizuka, S., and Oka, Y. (2003). “Two-dimensional simulation of drop deformation and breakup around the critical Weber number”, Journal of Nuclear Engineering and Design, Vol. 225, pp. 37-48.

Farhadi, L., and Ataie-Ashtiani, B. (2004), “A fully mesh-less Lagrangian numerical method for prediction of free water surface”, Taylor and Francis Group, Hydraulics of Dams and River Structures, pp. 345-352.

Jafari-Nodoushan, E., Hosseini, K., Shakibaeinia, A. and Mousavi, S.F. (2016). “Meshless particle modeling of free surface flow over spillways”. Journal of Hydroinformatics, Vol. 18, No. 2, pp. 354-370.

Khayyer, A. and Gotoh, H. (2009). “Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure”. Journal of Coastal Engineering, Vol. 56, pp. 419-440.

Khayyer, A. and Gotoh, H. (2010). “A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method”. Journal of Applied Ocean Research, Vol. 32, pp. 124-131.

Kondo, M. and Koshizuka, S. (2011). “Improvement of stability in moving particle semi-implicit method”. International Journal for Numerical Methods in Fluids, Vol. 65, pp. 638-654.

Koshizuka, S. and Oka, Y. (1996). “Moving-particle semi-implicit method for fragmentation of incompressible fluid”. Journal of Nuclear Science and Engineering, Vol. 123, pp. 421-434.

Koshizuka, S., Ikeda, H., and Oka, Y. (1999). “Numerical analysis of fragmentation mechanism in vapor explosions”, Journal of Nuclear Engineering and Design, Vol. 189, pp. 423-433.

Lee E.-s, Moulinec C., Xu R., Violeau D., Laurence, D., & Stansby P. (2008). Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. Journal of Computational Physics, Vol. 227, pp. 8417-8436.

Liu, G.R., (2003). “Mesh free methods: moving beyond the finite element method”. 2nd Edition, CRC Press, Boca Raton, FL 33487-2742.

Ma, Q.W., “Meshless local Petrove-Galerkin method for two-dimensional nonlinear water wave problems”. (2005). Journal of Computational Physics,Vol. 205, pp. 611-625.

Monaghan, J.J. and Kos, A. (1999). “Solitary waves on a certain beach”. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(3): 145-154.

Otsuka, T., Shimizu, Y., Kimura, I, Otsuki, M., and Saito, Y. (2009), “Fundamental studies on applications of MPS method for computing snow avalanches”, International Snow Science Workshop, Davos.

Shakibaeinia, A. and Jin, Y.C. (2010). “A weakly compressible MPS method for modeling of open-boundary free-surface flow”. International Journal for Numerical Methods in Fluids, Vol. 63, pp. 1208-1232.

Shao, S. and Lo, E.Y.M. (2003). “Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface”. Journal of Advances in Water Resources, Vol. 26, pp. 787-800.

Shibata, K., and Koshizuka, S. (2007) ‘‘Numerical analysis of shipping water impact on a deck using a particle method,’’ Journal of Ocean Engineering., Vol. 34, pp. 585–593

Shibata, K., Koshizuka, S., and Oka, Y. (2004), “Numerical analysis of jet breakup behavior using particle method”, Journal of Nuclear Science and Technology, Vol. 41, No. 7, pp. 715-722.

Shobeyri, G. and Afshar, M.H. (2012). “Corrected discrete least-squares meshless method for simulating free surface flows”. Journal of Engineering Analysis with Boundary Elements, Vol. 36, pp. 1581-1594.

Tanaka, T. and Masunaga, T., (010), “Stabilization and smoothing of pressure in MPS method by quasi-compressibility”, Journal of Computational Physics, Vol. 229, pp. 4279-4290.

Tavakkol, S., Zarrati, A.R. and Khanpour, M., (2017). “Curvilinear smoothed particle hydrodynamics”. International Journal for Numerical Methods in Fluids, Vol. 83, pp. 115-131.

United States Army Corps of Engineering (USACE). Hydraulic design of spillway, Technical Engineering and Design Guides, No. 12, ASCE, 1995.

Wendland H. (1995). “Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree.” Journal of Advances in Computational Mathematics, Vol. 4, pp. 389-396.