» Research Note « Estimation of Longitudinal Dispersion Coefficient in Compound Channels with Two Rows of Rigid Vegetation (tree) over Floodplain

Document Type : Technical Note

Author

Shiraz Agriculture University

Abstract

Vegetation can be a significant factor for improving water quality and reducing the concentration of pollutants. In this study, the longitudinal dispersion coefficient and variations of the tracer concentration have been studied using Potassium permanganate (KMnO4) as a non-decayable tracer. The experiments were conducted in a straight rectangular compound cross section with 8 m length, 0.25 m width, and 0.6 m height. Two rows of metal cylinders were used over the floodplain for simulating rigid vegetation. Digital image processing technique with imaging from tracer cloud in Matlab software was used for measuring tracer concentration in three sections downstream of the injection. The results showed that shear flow between vegetation and floodplain wall was invigorated in the presence of two rows of vegetation. Consequently, this shear flow had a significant impact on longitudinal dispersion coefficient. Accordingly, two rows of trees increase the longitudinal dispersion coefficient up to 39.2% in specific relative depth (0.56) compared to non-vegetated case and causes reduction in the concentration of contaminants downstream of the injection section. The results of non dimensional longitudinal dispersion coefficient obtained in this study compared with the empirical relationship proposed by different researchers and the accuracy of each method for estimating the longitudinal dispersion coefficient of waterways combined with vegetation over the floodplain were also investigated. The results showed that the models of Elder (1959) and Deng et al. (2002) predict the longitudinal dispersion coefficient with two rows of vegetation over flood plain with higher accuracy.
 

Keywords


جاعل، آ؛ موسوی جهرمی، ح.؛ کاشفی‌پور، م. و سلطانی محمدی، ا. (1387). "تخمین ضریب انتشار طولی در کانال‌‌های آبیاری"، دومین همایش ملی مدیریت شبکه‌های آبیاری و زهکشی، اهواز، دانشگاه شهید چمران.
حمیدی ‌فر، ح.؛ امید، م.ح.؛ امیری، م. ج. و بهرامی، م. (1395). "کاربرد روش پردازش تصویر دیجیتال در برآورد ضریب انتشار طولی در آبراهه‌های مرکب"، نشریه‌ی پژوهش‌های حفاظت آب و خاک. جلد 23، شماره 4،ص.ص. 281-293
حمیدی ‌فر، ح.؛ امید، م.ح. و کشاورزی، ع.ر. (1392). "بررسی آزمایشگاهی ضریب انتشار طولی آلاینده‌ها در رودخانه‌های با مقاطع مرکب"، سومین کنفرانس بین‌المللی برنامه‌ریزی و مدیریت محیط‌زیست، دانشگاه تهران، تهران.
Choi, S. and Lee, J. (2012). “Impact of vegetation on contaminant transport in partly-vegetated open-channel flows”. Proceedings of the 9th International Symposium on Ecohydraulics. 17th to 21thSeptember, Vienna, Austria.
Deng, Z.Q.; Bengtsson, L.; Singh, V.P. and Adrian, D.D. (2002). “Longitudinal dispersion coefficient in single-channel streams”. Journal of Hydraulic Engineering. 128(10), pp. 901-916.
Elder, J.W. (1959). “The dispersion of marked fluid in turbulent shear flow”. Journal of Fluid Mechanics. 5(4), pp. 544-560.
Fischer, H.B.; List, E.; Koh, R.; Imberger, J. and Brooks, N. (1979). “Mixing in island and coastal waters”. Academic. New York.
Glover, R.E. (1964). “Dispersion of dissolved or suspended materials in flowing streams”. Geological Survey Professional Paper, 433-B, pp. 33.
Hamidifar, H.; Omid, M.H. and  Keshavarzi, A. (2015). “Longitudinal dispersion in waterways with vegetated floodplain”. Ecological Engineering. 84, pp. 398-407.
Kashefipour, S. M., and Falconer, R. A. (2002). “Longitudinal dispersion coefficients in natural channels”. Water Research, 36(6), 1596-1608.
Lightbody, A. F., and Nepf, H. M. (2006). “Prediction of near-field shear dispersion in an emergent canopy with heterogeneous morpholog”. Environmental Fluid Mechanics, 6(5), 477-488.
Magazine, M.K.; Pathak, S.K. and Pande, P.K. (1988). “Effect of bed and side roughness on dispersion in open channels”. Journal of Hydraulic Engineering. 114(7), pp. 766-782.
McQuivey, R.S. and Keefer, T.N. (1974). “Simple method for predicting dispersion in streams”. Journal of the Environmental Engineering Division. 100(4), pp. 997-1011.
Nepf, H.M.; Mugnier, C.G. and Zavistoski, R.A. (1997). “The effects of vegetation on longitudinal dispersion”. Estuarine, Coastal and Shelf Science. 44(6), pp. 675-684
Parker, F.L. (1961). “Eddy diffusion in reservoirs and pipelines”. Journal of the Hydraulics Division. 87(3), pp. 151-171.
Perucca, E., Camporeale, C. and Ridolfi, L. (2009). Estimation of the dispersion coefficient in rivers with riparian vegetation. Advances in Water Resources, 32(1), 78-87.
Seo, I.W. and  Cheong, T.S. (1998). “Predicting longitudinal dispersion coefficient in natural streams”. Journal of Hydraulic Engineering. 124(1), pp. 25-39.
Tanino, Y., and Nepf, H. M. (2008). “Lateral dispersion in random cylinder arrays at high Reynolds number”. Journal of Fluid Mechanics, 600, 339-371.
Taylor, G. (1954). The Dispersion of matter in turbulent flow through a pipe, Proceedings of the Royal Society of London A: Mathematica, Physical and Engineering Sciences Conference. 223, pp. 446-468.