

Experimental Investigation of the Threshold Submergence in Combined Throat Flumes

Hossein Soltani Kazemi¹, Mohsen Solimani Babarsad², Mohammad Hossein Pourmmohamadi^{3*}, Hossein Eslami², Hossein Ghorbanizadeh Kharazi²

1- Department of Civil Engineering – Water Resources Engineering and Management, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran.

2- Department of Water Science, Water Science and Environmental Research Center, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran.

3- Department of Water Engineering, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran.

Abstract

Introduction: There are generally two main methods for measuring fluid flow in open channels. The first method involves measuring the average velocity and cross-sectional area and multiplying them to calculate the discharge. The second method involves creating a controlled depth using a structure and establishing a direct relationship between the depth and flow rate (known as the stage-discharge relationship), where the flow rate can be directly determined by measuring the depth (Potter et al., 2012). Flow passing through a structure for measurement is categorized into two main types: free or modular flow and submerged or nonmodular flow. Since the hydraulic behavior of these structures differs under free and submerged conditions, determining the boundary between these two flow states is essential. The threshold of each structure represents the boundary between these two flow states. So far, no studies on this topic have been specifically for flumes with combined cross-sections. Therefore, this research aims to cover this subject. This study aims to experimentally investigate the threshold of submergence in trapezoidal-rectangular and triangularrectangular combined cross-section flumes. For this purpose, the submergence threshold of these flumes is examined for various flow rates and geometries. Additionally, empirical relationships for both proposed flume types have been developed after dimensional analysis and non-dimensionalities of influential parameters for engineers to use in the design phase. Finally, the submergence thresholds of these two types of flumes are compared.

Methodology: The experiments in this study were conducted on horizontal and rectangular flumes with dimensions of 20, 0.6, and 0.5 m for length, width, and height. The flumes have a closed water flow system, and an end gate to control of downstream depth. In this research, different models of flumes were tested at various flow rates. In total, 170 experiments were performed for the trapezoidal-rectangular flume, and 101 experiments were conducted for the triangular-rectangular flume in the threshold submergence state.

The effective parameters on the threshold submergence of a trapezoidal-rectangular flume include geometrical parameters, fluid characteristics, and gravity acceleration. The geometric parameters are the height of the flume P, the amount of floor opening a, and the width of flume B. The angles of upstream and downstream transitions are not considered because they are fixed. Fluid-related parameters include dynamic viscosity μ and specific mass ϱ . Another parameter affecting the flow in open channels is the acceleration of gravity g. Also, the parameters related to the flow, including the upstream depth h, and the downstream depth ht, are effective variables on the threshold submergence. By using Buckingham's Π theory,

(1)

(2)

choosing the parameters μ , g, and h as repetition variables, and using the theory of incomplete self-similarity (Barenblatt, 1987), finally, two Eqs. (1) and (2) are as follows.

$$\frac{h_t}{P} = \left(\frac{h}{B}\right)^m f_1(\frac{a}{B}, Z)$$
$$\frac{h_t}{P} = \left(\frac{h}{B}\right)^m f_2(Z)$$

where m is a numerical constant that is determined based on experimental data.

Results and discussion: The results indicate that although the h_t/B index shows a consistent increasing trend, it effectively fails to differentiate between flows with different heights. The h_t/h index demonstrates that this index does not exhibit a consistent trend compared to the h/B parameter. Therefore, based on the analyses conducted in this study, h_t/P was considered a suitable threshold index for both types of flows under investigation.

The index increases as the height of the flume increases for all three triangular prism side lengths (5, 10, and 15 cm). It is worth mentioning that the changes for low h/B ratios are negligible, and the difference between different flume depths increases with an increase in this ratio, especially for structures with side lengths of 10 and 15.

The results show that with an increase in this parameter, the threshold submergence index decreases, indicating an increase in the sensitivity of the flow to the upstream depth. For a specific flow height and discharge, the upstream depth of the structure decreases with an increase in the parameter a. Therefore, the upstream energy of flows with higher opening ratios is lower, resulting in their submergence at an earlier stage.

Similarly, similar to the trapezoidal-rectangular flow, in this type of flume, with an increase in height, the threshold submergence index increases, and the flume submerges later.

Equations (3) and (4) demonstrate the threshold submergence index for the combined trapezoidal-rectangular and triangular-rectangular flumes. The results show that more than 80% of the data have an error of less than 5%. The provided empirical equations have achieved satisfactory accuracy in estimating the experimental results.

$$\frac{h_t}{P} = 4 \left(\frac{h}{B}\right)^{1.1} \left(\frac{a}{B}\right)^{0.088} (Z)^{0.096}$$

$$\frac{h_t}{P} = 1.443 \left(\frac{h}{B}\right)^{1.254} (Z)^{1.29}$$
(3)

Conclusion: The investigation of various dimensionless parameters has shown that the ratio of the downstream depth to the flume height (ht/P) is a suitable indicator for the threshold submergence for both types of flumes. In both types of flumes, as the flow depth increases, the threshold submergence index also increases, indicating a decrease in the sensitivity of the flume to the downstream depth. The study of the effect of the trapezoidal base on the threshold submergence index has shown that as the base width increases, the threshold submergence decreases. A comparison between the two types of flumes has shown that in low flow rates, the triangular-rectangular combined flume reaches the threshold submergence earlier than the trapezoidal-rectangular flume. In contrast, in high flow rates, the opposite is true. Statistical analyses have demonstrated that the proposed relationships accurately predict the experimental results, with over 80% of the predictions having an error of less than 5%.

Keywords: Flow measurement, free flow, submerged flow, experimental modeling, flume.

Journal of Hydraulics
??(?), ????
2

انجمن هیدرولیک ایران نشریه هیدرولیک

بررسی آزمایشگاهی آستانه استغراق فلومهای با گلوگاه ترکیبی

حسین سلطانی کاظمی'، محسن سلیمانی بابرصاد'، محمدحسین پورمحمدی^{**}، حسین اسلامی'، حسین قربانی زاده خرازی'

> ۱- گروه مهندسی عمران، مهندسی و مدیریت منابع آب، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران. ۲- گروه مهندسی آب، مرکز تحقیقات علوم آب و محیط زیست، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران. ۳- گروه مهندسی آب، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران.

چکیده: فلوم یکی از سازههای متداول اندازه گیری آب در مجاری باز میباشد. یکی از اصول اندازه گیری جریان با استفاده از این سازه، مشخص بودن آزاد یا مستغرق بودن جریان عبوری از آن میباشد. هدف این تحقیق تعیین آستانه استغراق دو نوع فلوم با گلوگاه ترکیبی میباشد. آزمایشهای این تحقیق در یک فلوم به طول، عرض و ارتفاع بهترتیب ۲۰، ۱۶، و ۱۵، متر در آزمایشگاه هیدرولیک سازمان آب و برق خوزستان انجام شده است. برای این تحقیق ۹ مدل فلوم با مقطع ذوزنقهای- مستطیلی و ۴ مدل فلوم با مقطع مثلثی- مستطیلی در دبیهای مختلف مورد آزمایش قرار گرفته و در مجموع ۲۷۱ آزمایش انجام شده است. نتایج این تحقیق نشان داد که با افزایش ارتفاع فلوم، حساسیت سازه به عمق پایاب کمتر میشود. همچنین مقایسه دو فلوم مختلف نشان میدهد که فلوم با مقطع مثلثی- مستطیلی در دبیهای پایین حساسیت بیشتری به عمق پایاب داشته و زودتر مستغرق میشود و در دبیها بالا فلوم ذوزنقهای- مستطیلی زمی میشود. با استفاده از تحلیل ابعادی و اصل خود تشابهی ناقص و همچنین رگرسیون چند متغیره غیرخطی روابط تجربی مناسبی برای شاخص

كليدواژگان: اندازه گيرى جريان، جريان آزاد، جريان مستغرق، مدلسازى آزمايشگاهى، فلوم.

۱– مقدمه

اندازه گیری، ثبت و پایش جریان آب در آبراههها و شبکه های آبیاری و زهکشی از ضروریات تحویل حجمی آب تقاضا محور بوده و عملیاتی شدن آن باعث کاهش مسائل اجتماعی ناشی از ضعف مدیریت در تحویل و فروش آب گردیده وامکانات پایهای برای برنامهریزی استفاده بهینه از آب را فراهم مینماید. با توجه به این که کشور ما در مناطق گرم خشک جهان قرار دارد، کمبود منابع آب در حال حاضر و آینده به یک چالش اساسی تبدیل شده است. بنابراین ضرورت دارد همگام با دنیا ما نیز سنجش و مدیریت منابع آب موجود و مدیریت بهینه آنها را جدی گرفت. با این هدف سازههای آب سنجی مختلفی در مجاری باز و بسته تاکنون ارائه شده است.

به دلیل وجود عدم قطعیتها در سنجش سیالات در مجاری باز نسبت به مجاری بسته پیچیدگیهای تحلیلی در مجاری باز بیشتر میباشد. برای سنجش سیالات در مجاری باز به صورت عمده دو روش کلی وجود دارد. در روش اول با

اندازه گیری سرعت متوسط و سطح مقطع و ضرب آنها دبی محاسبه می شود. در روش دوم با تشکیل عمق کنترل با استفاده از یک سازه و ایجاد رابطه مستقیم بین عمق و دبی جریان (دبی- اشل)، با اندازه گیری عمق، دبی به صورت مستقیم به دست می آید (Potter et al., 2012).

همانطور که بیان شد یکی از روشهای اندازه گیری جریان در مجاری باز روش تشکیل مقطع کنترل و ارتباط مستقیم بین دبی و اشل میباشد. در این زمینه سازههای مختلفی مثل سرریز، روزنه، و فلومها در صنعت مورد استفاده قرار می گیرد (White, 1990).

فلومها سازههایی هستند که به دو صورت کلی تنگشدگی از کناره و مانع مرکزی باعث تشکیل عمق کنترل و ارتباط مستقیم بین دبی و تراز سطح آب میشود. در فلومهای با تنگشدگی کناری، مقطع کانال با استفاده از دو مانع در دیواره فلوم کاهش یافته و عمق بحرانی تشکیل میشود. در فلومهای با موانع مرکزی مقطع فلوم با استفاده از یک مانع در مرکز فلوم کاهش یافته و عمق بحرانی تشکیل میشود.

تاکنون فلومهای مختلفی مانند, فلوم ونتوری^۱، پارشال^۲، گلو کوتاه و بلند^۳، استوانهای و شبه استوانهای^۴، فلومهای با موانع مرکزی^۵و دیگر انواع هندسهها مورد مطالعه و استفاده Parshall, 1950; Skogerboe at) در صنعت قرار گرفتهاند (Parshall, 1950; Skogerboe at al., 1972; Blaisdell, 1994; Vatankhah and Mahdavi, 2012; Saki et al., 2016;Carollo et al., 2016; Yarahmadi and Vatankhah, 2021; Khosronejad et al., 2021; Khastar-Borujeni and Samadi-.(Borujeni2012).

فلومها را میتوان به دو دسته کلی فلومهای با و بدون گلو تقسیم بندی کرد. فلومهای با گلو مانند پارشال فلوم معمولاً به تغییرات کف نیز نیاز داشته ولی فلومهای بدون گلو صرفاً با استفاده از تنگ شدگی در دیواره کانال ایجاد می شوند و ساخت آن ها ساده تر و کم هزینه تر است. اگرچه همچنان از فلومهای با گلو و پیچیده تر به دلیل عمومیت روابط آن ها استفاده می شود ولی فلومهای بدون گلو با ساختار ساده تر نیز در این سال ها مورد توجه قرار گرفته اند. تاکنون مطالعات مختلفی در ارتباط با فلومهای ساده بدون گلو با هدف ساده سازی ساخت و کاهش هزینه این سازه انجام شده است Samani and Magallanez, 2000; Ferro, 2016; (Carollo et al., 2016; Kolavani et al., 2018; Bijankhan and Ferro, 2019; Vatankhah, 2017; Aminpour et al., 2020; Vatankhah, 2021;

فلوم بدون گلو در ابتدا توسط Hyatt فلوم بدون گلو در ابتدا توسط (1967) توسعه داده شد. در سالهای اخیر تحقیقات مختلفی در ارتباط با این نوع فلوم با شکل گلوگاه مستطیلی Weber et al., 2007; Ramamurthy and). Tadayon, 2008; Temeepattanapongsa et al., 2013; Manekar et al., 2007; Xiao et al., 2016; Das et al, 2017).

در بعضی آبراهههای فصلی مقدار دبی اندک بوده و فقط در بعضی مواقع سال دارای دبی قابل توجهی هستند. از طرفی این آبراههها دارای آورد رسوبی فراوانی بوده که استفاده از سازههایی مانند سرریز مثلثی را با مشکل مواجه میکنند. در این مسیلها نشست رسوبات در بالادست سرریز باعث عدم کارایی مناسب سرریز میشود. بنابراین در صورت ارائه یک فلوم با ساختاری که هم بتواند دبیهای کم را با دقت مناسب اندازه گیری کند و مشکل نشست رسوبات را نداشته باشد میتواند کارآمد باشد. از طرفی فلومهای موجود و مورد

استفاده در صنعت برای محدوده مشخص از دبی مورد استفاده قرار می گیرند. با انتخاب فلومهایی با مقطع ترکیبی مثلثی/ذوزنقهای و مستطیلی، که قسمت مثلثی/ذوزنقهای آن برای دبیهای پایین و قسمت مستطیلی آن برای دبیهای زیاد وارد مدار می شود، می توان محدوده اندازه گیری جریان از دبیهای کم تا زیاد را پوشش داد. همچنین به دلیل نداشتن بالاآمدگی در کف در این نوع فلوم، امکان به دام افتادن رسوب به حداقل می رسد. بنابراین این سازه از نظر عملکرد هیدورلیکی و قابلیت حذف رسوب می تواند دارای قابلیت باسد.

Alai and Vatankhah (2023) به مطالعه فلوم با مقطع ذوزنقهای در شرایط جریان آزاد پرداختند. در این تحقیق روابطی برای تعیین دبی این نوع فلوم با استفاده از روشهای مختلف تحلیل ابعادی، معادله پیوستگی و انرژی ارائه شد و خطای هر کدام از آنها مورد ارزیابی قرار گرفت.

جریان عبوری از یک سازه اندازه گیری به دو دسته کلی جریان آزاد یا مدولار و جریان مستغرق یا غیرمدولار تقسیم میشود. با توجه به اینکه عملکرد هیدرولیکی این سازهها در شرایط آزاد و مستغرق متفاوت است، تعیین مرز بین این دو دو حالت از جریان ضروری است. در واقع مرز بین این دو حالت آستانه استغراق هر سازهای میباشد. تاکنون مطالعهای در این زمینه برای فلومهای با مقطع ترکیبی انجام نشده است. بنابراین این تحقیق با هدف پوشش این

هدف این تحقیق مطالعه آزمایشگاهی آستانه استغراق در فلومهای با مقطع ترکیبی ذوزنقهای – مستطیلی و مثلثی – مستطیلی است. برای این منظور به ازای دبیها و هندسههای مختلف این سازهها، آستانه استغراق آنها مورد بررسی قرار گرفته است. همچنین برای استفاده مهندسان در فاز طراحی، پس از تحلیل ابعادی و بیبعد سازی پارامترهای مؤثر، روابطی تجربی برای هر دو نوع فلوم پیشنهادی ارائه شده است. در نهایت، آستانه استغراق این دو نوع فلوم با هم مقایسه شده است.

> ۲– مواد و روشها ۲-۱- مدلسازی آزمایشگاهی

> > ¹Venturi ²Parshall ³Cutthroat and long-throated

⁴Cylindrical and semi-cylindrical ⁵Central baffle

آزمایشهای این تحقیق در فلومی افقی و مستطیل شکل به طول، عرض و ارتفاع بهترتیب ۲۰, ۶/۶ و ۱/۵ متر در آزمایشگاه سازمان آب و برق خوزستان انجام شد. فلوم دارای یک سیستم بستهی جریان آب است و برای کنترل عمق پاییندست از دریچه انتهایی استفاده می شود. در این تحقیق برای کنترل و تنظیم دبی ورودی به فلوم از یک شیرفلکه بعد از خروجی پمپ استفاده شده است.برای اندازه گیری دبی ورودی به فلوم از سرریز مستطیلی لبه تیز مدرج در انتهای پاییندست سیستم استفاده شد. بهمنظور قرائت ارتفاع استاتیکی سطح آب در بالادست و پاییندست فلوم از عمق سنج روی فلوم استفاده شد. برای ساخت فلومها از ورقه آهن گالوانیزه به ضخامت ۲ میلی متر استفاده شده است. شکلهای ۱ و ۲ به ترتیب تصاویر آزمایشگاهی و شماتیک فلوم ذوزنقهای- مستطیلی و فلوم مثلثی-مستطیلی را نمایش میدهد. در این تحقیق مدلهای مختلف فلوم در دبیهای مختلف مورد آزمایش قرار گرفته و در مجموع ۱۷۰ آزمایش برای فلوم ذوزنقهای- مستطیلی و ۱۰۱ آزمایش برای فلوم مثلثی- مستطیلی در حالت آستانه استغراق انجام شد. در جدول ۱ جزییات آزمایشهای این تحقیق ارائه شده است.

آستانه استغراق در واقع ترازی از عمق پایاب است که با افزایش بیشتر عمق پایاب، عمق بالادست ۱ میلی متر افزایش یابد. در واقع برای ترازهای پایین تر از آستانه استغراق، شرایط جریان آزاد یا مدولار و برای ترازهای بالاتر از آستانه استغراق جریان مستغرق است و تغییرات عمق پایاب بر عمق بالادست فلوم اثر می گذارد.

برای تعیین آستانه استغراق به صورت آزمایشگاهی، در ابتدا در شرایطی که دریچه انتهایی کاملاً باز است، جریان آزاد برقرار میشود. در ادامه به تدریج دریچه پایاب بسته شده تا تراز پایاب افزایش یابد. بعد از هر بار افزایش عمق، باید زمان کافی به جریان داده شود که جریان کاملا ماندگار شود. این عمل تا زمانی ادامه پیدا می کند که افزایش بیشتر عمق پایاب باعث افزایش عمق بالادست به اندازه ۱ میلی متر میشود. در این حالت تراز قبل از ترازی که باعث افزایش عمق بالادست شده است به عنوان آستانه استغراق لحاظ می شود.

در این آزمایشها عمق بالادست و پاییندست در فاصلهای از فلوم اندازهگیری میشود که سطح آب افقی بوده و نوسانات سطحی ناچیز باشد. برای عمق بالادست معمولاً در

فاصلهای ۴ برابر عمق بالادست فلوم شرایط مناسب است. با این وجود در پاییندست فلوم به دلیل پرش هیدرولیکی، تلاطم و نوسانات و امواج سطحی، سعی می شود عمق پایاب در فاصلهای از پاییندست فلوم برداشت شود که این نوسانات حداقل باشد. این فاصله بسته به دبی جریان و همچنین هندسه فلومهای مختلف متفاوت می باشد.

۲-۲- تحلیل ابعادی

پارامترهای مؤثر بر آستانه استغراق فلوم ذونقه ای-مستطیلی شامل پارامترهای هندسی، مشخصات سیال و شتاب ثقل میباشند. مطابق شکل ۱، پارامترهای هندسی ارتفاع فلوم P، مقدار بازشدگی کف n و عرض فلوم B میباشد. زوایای تبدیلهای بالادست و پایین دست به دلیل ثابت بودن لحاظ نمی شود. پارامترهای مربوط به سیال شامل لزجت دینامیکی μ ، و جرم مخصوص q میباشد. دیگر پارامتر مؤثر بر جریان در مجاری باز شتاب ثقل g میباشد. همچنین پارامترهای مربوط به جریان شامل عمق بالادست h و پاییندست جریان h از متغیرهای مؤثر بر آستانه استغراق میباشد.

$$f_1(h, h_t, B, g, P, \rho, \mu, a) = 0$$
 (1)

با استفاده از تئوری پی باکینگهام (Barenblatt, 1987) و با انتخاب پارامترهای µ، g، و hبهعنوان متغیرهای تکرار، میتوان رابطه (۱) را بهصورت بدون بعد زیر نوشت:

$$f_1\left(\frac{B}{h}, \frac{a}{h}, \frac{P}{h}, \frac{h_t}{h}, \frac{\rho\sqrt{gh^3}}{\mu}\right) = 0$$
⁽²⁾

$$\pi_{1} = \frac{h_{t}}{h} / \frac{P}{h} = \frac{h_{t}}{P}$$
(3)

$$\pi_{2} = \frac{a}{h} / \frac{B}{h} = \frac{a}{B}$$
(4)

$$\pi_{3} = \frac{1}{2} \left(\frac{B}{h} - \frac{a}{h}\right) / \frac{P}{h} = \frac{B - a}{2P} = Z$$
(5)

بنابراین پارامترهای بدون بعد رابطه (۲) به صورت زیر تغییر می کنند.

$$\frac{h_t}{P} = f_1\left(\frac{h}{B}, \frac{a}{B}, Z, \frac{\rho\sqrt{gh^3}}{\mu}\right) \tag{6}$$

(c) Experimental view Fig. 1 Schematic and an experimental view of trapezoidal-rectangular flume شکل ۱ شماتیک و یک تصویر آزمایشگاهی از فلوم ذوزنقهای – مستطیلی

در رابطه (۶) پارامتر $\frac{\rho\sqrt{gh^3}}{\mu}$ عدد رینولدز میباشد. در آزمایشهای این تحقیق عدد رینولدز بزرگتر از ۵۶۵۰ میباشند بنابراین از عدد رینولدز صرفنظر میشود و رابطه نهایی به شکل زیر ارائه میشود.

$$\frac{h_t}{P} = f_1\left(\frac{h}{B}, \frac{a}{B}, Z\right) \tag{7}$$

قابل ذکر است که در پیشینه تحقیق برای آستانه استغراق شاخصهای دیگری مانند h_t/B و h_t/h نیز به عنوان آستانه استغراق معرفی شدهاند(Bijankhan et al., 2022). همانطوری که در بخش نتایج نشان داده شده است h_t/P شاخص مناسب تری برای این نوع فلومها می باشد.

فلوم با مقطع مثلثی مستطیلی نیز تحلیل ابعادی مشابهای دارد. در این نوع فلوم با توجه به این که پارامتر عرض کف (a) وجود ندارد عدد بدون بعد a/B حذف شده و در نهایت رابطه آستانه استغراق این نوع فلوم به صورت زیر ارائه میشود.

$$\frac{h_t}{P} = f_2\left(\frac{h}{B}, Z\right) \tag{8}$$

برای مقادیر مشخص Z و a/B در رابطه (۶) و Z در رابطه $h/B \to \infty$ و $h_t/P \to 0$ آنگاه $h/B \to 0$ و $m_t/P \to 0$ آنگاه $m_t/P \to \infty$ بنابراین، با توجه به نظریه خود تشابهی ناقص، عدد بدون بعد h/B در روابط (۷) و (۸) را می توان به عنوان یک عبارت توانی نوشت (Barenblatt, 1987)

$$\frac{h_t}{P} = \left(\frac{h}{B}\right)^m f_1(\frac{a}{B}, Z) \tag{9}$$

$$\frac{n_t}{P} = \left(\frac{n}{B}\right) f_2(Z) \tag{10}$$

که در آن *m* یک ثابت عددی است که بر اساس دادههای تجربی تعیین میشود.

در جدول ۲ محدوده متغیرهای بدون بعد روابط (۹) و (۱۰) ارائه شده است.

جدول ۲ محدوده اعداد بدون بعد هر دو نوع فلوم Table 2 Range of independent dimensionless variables for both flumes

for both fidilies				
Range	Indepe	endent dim	ent dimensionless variable	
Range -	h/B	Ζ	a/B	Re
	Trapezoidal-rectangular flume			
Min	0.167	0.90	0.083	5656
Max	0.443	1.83	0.25	92297
	Triangular-rectangular flume			
Min	0.15	0.86	-	5650
Max	0.51	1.5	-	93353

۳– نتایج و بحث

بخش نتایج و بحث شامل چهار قسمت مختلف میباشد. در بخش اول پس از تحلیل شاخص مناسب برای آستانه استغراق در هر دو نوع فلوم، به بررسی اثر متغیرهای مختلف بر این شاخص پرداخته شده است. در بخش دوم روابط کلی بسط داده شده در بخش تحلیل ابعادی با استفاده از مدل

SPSS 16 مدلسازی شده و رابطه مناسب استخراج شده است. در بخش سوم آستانه استغراق دو نوع فلوم با هم مقایسه شده است. در بخش پایانی نیز اثر موقعیت قرارگیری سازه فلوم مورد بررسی قرار می گیرد.

۳-۱- اثر متغیرها بر آستانه استغراق

همانطور که بیان شد شاخصهای مختلفی ازجمله نسبت عمق پاییندست به عمق بالادست (h_t/h) و نسبت عمق پاییندست به عرض کف کانال (h_t/B) برای آستانه استغراق معرفی شده است. در شکل ۳ و ۴ به ترتیب این دو شاخص برای هر دو فلوم ذوزنقهای– مستطیلی و مثلثی– مستطیلی برای ارتفاعهای مختلف ارائه شده است. نتایج نشان میدهد که اگرچه شاخص h_t/B روند یکنواختی افزایشی دارد ولی نتواسته است فلومهای با ارتفاع مختلف

Fig 4. The variations of a) h_t/B and b) h_t/h with respect to the parameter h/B in the triangular-rectangular flume h/B فارم مثلثی - مستطیلی فلوم مثلثی - مستطیلی

را به خوبی تفکیک کند. نتایج شاخص h_t/h نشان میدهد h/B که این شاخص روند یکنواختی نسبت به پارامتر h/B نداشته است. بنابراین با توجه به تحلیلهای انجام شده در این تحقیق است. بنابراین با توجه به تحلیلهای انجام شده در برای هر دو نوع فلوم مورد تحقیق در نظر گرفته شد. شکل ۵ اثر ارتفاع فلومهای ذوزنقهای – مستطیلی را بر شاخص آستانه استغراق مناسب شکل ۵ اثر ارتفاع فلومهای ذوزنقهای – مستطیلی را بر شاخص آستانه استغراق مناسب شکل ۵ اثر ارتفاع فلومهای ذوزنقهای – مستطیلی دا بر شکل ۵ اثر ارتفاع فلومهای ذوزنقه ای میده. مطابق شکل به ضاحص آستانه استغراق میاب مرای و ۱۰ شکل ۵ اثر ارتفاع فلوم این شاخص در هر سه طول شاخص آستانه استغیرات برای نسبتهای پایین h/B ناچیز بوده خلع ۵، ۱۰ و ۱۵ سانتیمتری ذوزنقه، افزایش مییابد. قابل و با افزایش این نسبت مقدار تفاوت ارتفاع های مختلف خصوصاً در دو سازه با طول ضلع ۱۰ و ۱۵ اوزایش مییابد. برای یک دبی مشخص، در فلومهای با ارتفاع بیشتر، بار آبی بیشتری در بالادست فلوم وجود دارد. بنابراین مقاومت

بیشتر نسبت به مستغرق شدن و عمق پایاب دارند. در نتیجه شاخص آستانه استغراق آنها بزرگتر است. در شکل ۶ تغییرات شاخص آستانه استغراق برای مقادیر متفاوت a در فلوم ذوزنقهای- مستطیلی ارائه شده است. نتایج نشان میدهد که با افزایش مقدار این پارامتر شاخص

مستطیلی با طول ضلعهای مختلف

آستانه استغراق کاهش یافته و در واقع حساست فلوم به عمق پایاب افزایش مییابد. برای یک ارتفاع فلوم و دبی مشخص با افزایش پارامتر a عمق بالادست سازه کاهش مییابد. بنابراین انرژی بالادست فلومهای با بازشدگی بیشتر در کف کمتر بوده و در نتیجه زودتر مستغرق میشوند.

در شکل ۷ تغییرات شاخص آستانه استغراق برای فلومهای مثلثی- مستطیلی با ارتفاع مختلف ارائه شده است. مطابق شکل مشابه با فلوم ذوزنقهای- مستطیلی در این نوع فلوم هم با افزایش ارتفاع به دلیل افزایش انرژی بالادست فلوم، شاخص آستانه استغراق افزایش یافته و فلوم دیرتر مستغرق میشود.

نکته قابل ذکر اینکه مطابق شکل ۷ استفاده از شاخص آستانه استغراق h_t/P به خوبی توانسته است فلومهای با ارتفاع مختلف را تفکیک کند.

۳-۲- استخراج روابط تجربی

بر اساس تحلیل ابعادی انجام شده و همچنین استفاده از خودتشابهی ناقص در بخش قبل، در این بخش بر اساس رگرسیون چند متغیره غیرخطی و با استفاده از نرم افزار SPSS 16 دو رابطه تجربی برای فلوم با گلوگاه ترکیبی ذوزنقهای - مستطیلی و مثلثی - مستطیلی ارائه شد.برای محاسبه دقت روابط ارائه شده از معیارهای آماری جدول ۲ محاسبه دقت روابط ارائه شده از معیارهای آماری جدول ۲ استفاده می شود. که در آن h_t/P^{Mean} ضریب دبی مشاهدهای، h_t/P^C میانگین ضریب دبی مشاهدهای است.

رابطه (۱۱) شاخص آستانه استغراق برای فلوم ترکیبی ذوزنقهای- مستطیلی است. مقدار شاخص های آماری *R*² MSE و MAE این رابطه به ترتیب، ۰/۹۷، ۰/۰۳ و ۰/۰۲ م میباشد. در شکل ۸ (۵) مقادیر آزمایشگاهی و محاسباتی از رابطه ۱۱ با هم مقایسه شدهاند و همچنین در شکل ۸ (b) مقدار درصد خطای نسبی این رابطه نمایش داده شده

شکل ۹ (b) مقدار درصد خطای نسبی این رابطه نمایش داده شده است. نتایج نشان میدهد که بیشتر از ۸۰ درصد از دادهها خطایی کمتر از ۵ درصد دارند و رابطه تجربی ارائه شده با دقت مناسبی توانسته است نتایج آزمایشگاهی را تخمین بزند.

$$\frac{h_t}{P} = 1.443 \left(\frac{h}{B}\right)^{1.254} (Z)^{1.29} \tag{12}$$

جدول ۳ رابطههای آماری محاسبه دقت روابط ارائه شده

 Table 3 Statistical relationships to calculate the accuracy of the presented relationships

Metric	Equatio
RMSE	$\sqrt{\frac{1}{n}\sum_{i=1}^{n} (h_t/P^M - h_t/P^C)^2}$
MAPE	$\frac{1}{n}\sum_{i=1}^{n}\frac{\left h_{t}/P^{M}-h_{t}/P^{C}\right }{h_{t}/P^{M}}$
R ²	$\frac{1}{\sum_{i=1}^{n} (h_t/P^M - h_t/P^C)^2} \frac{\sum_{i=1}^{n} (h_t/P^M - h_t/P^C)^2}{\sum_{i=1}^{n} (h_t/P^M - h_t/P^{Mean})^2}$

۳-۳- مقایسه دو فلوم با گلوگاه ترکیبی

در این قسمت آستانه استغراق دو فلوم مختلف با هم مقایسه شده است. در شکل ۱۰ آستانه استغراق دو فلوم ذوزنقهای-مستطیلی با ارتفاع ۲۰ و ۲۵ سانتیمتر با زاویه ضلع کف ۱۰ سانتیمتر با فلومهای مثلثی- مستطیلی با ارتفاع مشابه مقایسه شده است.

مقایسه این دو شکل نشان میدهد که در دبیهای پایین فلوم با گلوگاه مثلثی- مستطیلی حساسیت بیشتری به عمق پایاب داشته و برای یک دبی مشخص، در عمق پایاب کمتری نسبت به فلوم ذوزنقهای- مستطیلی مستغرق میشود. مقایسه شکلها در دبیهای بالا در هر دو ارتفاع نشان میدهد که در دبیهای بالای ۵۰ لیتر بر ثانیه این روند برعکس شده و فلوم با گلوگاه ذوزنقهای- مستطیلی در عمق پایاب کمتری مستغرق میشود.

۳–۴– اثر عمق پایاب

یکی از فرضیههای این تحقیق اثر عمق پایاب در هنگام قرارگیری سازه در وسط کانال آزمایشگاهی بود. زیرا با قرارگیری سازه در وسط کانال همواره یک عمق آب قابل توجه در پایین دست سازه خصوصاً در دبیهای بالا تشکیل است. نتایج نشان میدهد که بیشتر از ۸۰ درصد از دادهها خطایی کمتر از ۵ درصد دارند و رابطه تجربی ارائه شده با دقت مناسبی توانسته است نتایج آزمایشگاهی را تخمین بزند.

$$\frac{h_t}{P} = 4\left(\frac{h}{B}\right)^{1/2} \left(\frac{a}{B}\right)^{0.038} (Z)^{0.096} \tag{11}$$

رابطه (۱۲) شاخص آستانه استغراق برای فلوم ترکیبی مثلثی- مستطیلی است. مقدار شاخص های آماری ²R، RMSE و MAE این رابطه به ترتیب، ۰/۹۸، ۰/۰۶ و ۰/۰۱ میباشد. در شکل ۹ (الف) مقادیر آزمایشگاهی و محاسباتی از رابطه ۱۲ با هم مقایسه شدهاند و همچنین در

شکل ۱۰ مقایسه دبی- عمق پایاب در هر دو نوع فلوم با مقطع

Fig. 11 Installation of a trapezoidal-rectangular flume (a = 10 cm, P = 20 cm) at the bottom end of the laboratory channel.

a = 10 cm, P =) شکل ۱۱ نصب فلوم ذوزنقهای - مستطیلی (a = 10 cm, P =) 20 cm

می شد. برای بررسی این موضوع، فلوم ذوزنقه ای با ارتفاع ۲۰ سانتی متر و اندازه ضلع کف ۵ سانتی متر در انتهای پایین دست کانال آزمایشگاهی در مجاورت دریچه پایین دست مطابق شکل ۱۱ نصب شد. مشابه بقیه آزمایش ها، برای این سازه نیز در این موقعیت دبی های مختلف استفاده شده و عمق بالادست برداشت شد. نتایج این دو آزمایش در شکل ۱۲ ترسیم شده است. مطابق شکل در این دو حالت نمودار دبی -اشل تقریباً یکسان بوده شکل در این دو حالت نمودار دبی اشل تقریباً یکسان بوده فلوم در وسط کانال نیز عمق استغراق تشکیل شده، عمق استغراق واقعی فلوم بوده و سازه در حالت استغراق نبوده است.

*ش*کل ۹ (a) مقایسه بین مقادیر آزمایشگاهی و محاسباتی *ht/P و* (1) درصد خطا رابطه (۱۲)

Fig. 12 Comparing of the upstream depth of the trapezoidal-rectangular flume (a = 10 cm, P = 20 cm) at two positions of the middle and the end of the experimental channel

a) مستطیلی (مستطیلی (مستطیلی (مستطیلی (**۱۲ مقای**سه عمق بالادست فلوم ذوزنقهای (۱۲ مقایی (۱۲ مقای) بایین دست و سط کانال و انتهای (۱۲ مقای مستطیلی (۱۲ مقای)

۶- نتیجه گیری

در این تحقیق به صورت آزمایشگاهی به بررسی آستانه استغراق فلومهای با گلوگاه ترکیبی ذوزنقهای- مستطیلی و مثلثی- مستطیلی پرداخته شد. برای این منظور ۱۳ مدل آزمایشگاهی ساخته شده و برای دبیهای مختلف مورد آزمایش قرار گرفت. بررسی پارامترهای بی بعد مختلف نشان داد که نسبت عمق پایاب به ارتفاع فلوم (h_t/P) یک شاخص مناسب برای آستانه استغراق هر دو نوع فلوم است. در هر دو نوع فلوم با افزایش ارتفاع فلوم، شاخص آستانه استغراق افزایش یافته و در واقع حساسیت فلوم به عمق پایاب کاهش می یابد. بررسی اثر قاعده کف ذوزنقه بر شاخص آستانه استغراق نشان داد که با افزایش قاعده کف، آستانه استغراق کاهش می یابد. مقایسه دو نوع فلوم نشان داد که فلوم با گلوگاه ترکیبی مثلثی- مستطیلی در دبیهای کم زودتر از فلوم ذوزنقهای- مستطیلی مستغرق شده و در دبیهای بالا برعکس میباشد. مقایسه اشل پاییندست یکی از فلومهای ذوزنقهای- مستطیلی در دو موقعیت وسط فلوم و انتهای فلوم نشان داد که آستانه استغراق اندازه گیری شده در وسط فلوم آستانه استغراق واقعی می باشد و موقعیت قرار گیری سازه در طول کانال تأثیری روی نتایج ندارد. با استفاده از آنالیز ابعادی و همچنین استفاده از تئوری خود تشابهی ناقص دو رابطه تجربی برای آستانه استغراق هر دو نوع فلوم ارائه شد. تحلیلهای آماری نشان داده که این دو رابطه با

دقت خوبی توانستهاست. نتایج آزمایشگاهی را پیشبینی کرده و بالای ۸۰ درصد از پیشبینیها دارای خطایی کمتر از ۵ درصد میباشند.

۵– فهرست نشانهها

عرض کف ذوزنقه (m)
عرض فلوم (m)
شتاب ثقل(²⁻ ms)
عمق آب بالادست (m)
عمق آب پایین دست (m)
ارتفاع فلومها (m)
دبی (m ³ s ⁻¹)
شيب يال ذوزنقه و مثلث (-)
علايم يوناني:
چگالی (kgm ⁻³)
لزجت دینامیکی (kgm ⁻¹ s ⁻¹)

۶- تقدیر و تشکر از سازمان آب و برق خوزستان برای فراهم کردن شرایط آزمایشگاهی این تحقیق تقدیر و تشکر می شود.

۷– منابع

Aali, F., and Vatankhah, A. R. (2023). Experimental study of simple flumes with trapezoidal contraction. Flow Measurement and Instrumentation, 90, 102328.

Aminpour, Y., Vatankhah, A. R., and Farhoudi, J. (2020). Experimental modeling of flumes with two semi-cylinder contractions (free and submerged flows). Flow Measurement and Instrumentation, 76, 101844.

Azimi, A. H., Rajaratnam, N., and Zhu, D. Z. (2014). Submerged flows over rectangular weirs of finite crest length. Journal of irrigation and drainage Engineering, 140(5), 06014001.

Barenblatt, G. I. (1987). Dimensional analysis. CRC Press.

Bijankhan, M., and Ferro, V. (2019). Experimental study on triangular central baffle flume. Flow Measurement and Instrumentation, 70, 101641.

Blaisdell, F. W. (1994). Results of Parshall flume tests. Journal of irrigation and drainage engineering, 120(2), 278-291.

Rahmanshahi, M., and Shafai Bejestan, M. (2020). Gene-expression programming approach for development of a mathematical model of energy dissipation on block ramps. Journal of Irrigation and Drainage Engineering, 146(2), 04019033.

Ramamurthy, A. S., and Tadayon, R. (2008). Numerical simulation of flows in cut-throat flumes. Journal of irrigation and drainage engineering, 134(6), 857-860.

Saki, M. J., Taleb beydokhti, N., vaseli, N., & Zand Parsa, S. (2016). Performance of Long Throated Flume and Modification of Broad Crested Weir to Improve the Measurement Accuracy. *Journal of Hydraulics*, *11*(2), 33-42.

Samani, Z., and Magallanez, H. (2000). Simple flume for flow measurement in open channel. Journal of Irrigation and Drainage Engineering, 126(2), 127-129.

Skogerboe, G. V., Bennett, R. S., and Walker, W. R. (1972). Generalized discharge relations for cutthroat flumes. Journal of the Irrigation and Drainage Division, 98(4), 569-583.

Temeepattanapongsa, S., Merkley, G. P., Barfuss, S. L., and Smith, B. L. (2013). Generic free-flow rating for cutthroat flumes. Journal of Hydraulic Engineering, 139(7), 727-735.

Vatankhah, A. R. (2017). Discussion of "New Stage-Discharge Equation for the SMBF Flume" by Francesco Giuseppe Carollo, Costanza Di Stefano, Vito Ferro, and Vincenzo Pampalone. Journal of Irrigation and Drainage Engineering, 143(8), 07017011.

Vatankhah, A. R. (2021). Discussion of "Cylindrical Central Baffle Flume for Flow Measurement in Open Channels" By Aniruddha D. Ghare, Ankur Kapoor, and Avinash M. Badar. Journal of Irrigation and Drainage Engineering, 147(7), 07021010.

Vatankhah, A. R., and Mahdavi, A. (2012). Simplified procedure for design of long-throated flumes and weirs. Flow Measurement and instrumentation, 26, 79-84.

Weber, R. C., Merkley, G. P., Skogerboe, G. V., and Torres, A. F. (2007). Improved calibration of Cutthroat flumes. Irrigation Science, 25, 361-373.

White, F. M. (1990). Fluid mechanics. New York.

Xiao, Y., Wang, W., Hu, X., and Zhou, Y. (2016). Experimental and numerical research on portable short-throat flume in the field. Flow Measurement and Instrumentation, 47, 54-61.

Yarahmadi, N., and Vatankhah, A. R. (2021). Experimental study on rectangular cut-throated flume: Effects of flume walls slopes and channel Carollo, F. G., Di Stefano, C., Ferro, V., and Pampalone, V. (2016). New stage-discharge equation for the SMBF flume. Journal of Irrigation and Drainage Engineering, 142(5), 04016005.

Carollo, F. G., Di Stefano, C., Ferro, V., and Pampalone, V. (2016). New stage-discharge equation for the SMBF flume. Journal of Irrigation and Drainage Engineering, 142(5), 04016005.

Das, R., Nayek, M., Das, S., Dutta, P., and Mazumdar, A. (2017). Design and analysis of 0.127 m (5 ") Cutthroat flume. Ain Shams Engineering Journal, 8(3), 295-303.

Fathi-moghaddam, M., Sadrabadi, M. T., and Rahmanshahi, M. (2018). Numerical simulation of the hydraulic performance of triangular and trapezoidal gabion weirs in free flow condition. Flow Measurement and Instrumentation, 62, 93-104. 963-971.

Ferro, V. (2016). Simple flume with a central baffle. Flow Measurement and Instrumentation, 52, 53-56.

Fritz, H. M., and Hager, W. H. (1998). Hydraulics of embankment weirs. Journal of Hydraulic Engineering, 124(9),

Hager, W. H., and Schwalt, M. (1994). Broadcrested weir. Journal of irrigation and drainage engineering, 120(1), 13-26.

Khastar-Borujeni, M., & Samadi-Borujeni, H. (2012). » Research Note « Hydraulic Flow Characteristics in Rotating Flume using the Acoustic Doppler Velocimeter (ADV). *Journal of Hydraulics*, 7(2), 77-85.

Khosronejad, A., Herb, W., Sotiropoulos, F., Kang, S., and Yang, X. (2021). Assessment of Parshall flumes for discharge measurement of open-channel flows: A comparative numerical and field case study. Measurement, 167, 108292.

Kolavani, F. L., Bijankhan, M., Di Stefano, C., Ferro, V., and Mazdeh, A. M. (2018). Flow measurement using circular portable flume. Flow Measurement and Instrumentation, 62, 76-83.

Manekar, V. L., Porey, P. D., and Ingle, R. N. (2007). Discharge relation for cutthroat flume under free-flow condition. Journal of irrigation and drainage engineering, 133(5), 495-499.

Parshall, R. L. (1950). Measuring water in irrigation channels with Parshall flumes and small weirs (Doctoral dissertation, Colorado State University. Libraries.

Potter, M. C., Wiggert, D. C., and Ramadan, B. H. (2012). Mechanics of fluids SI version. Cengage learning.

بررسی آزمایشگاهی آستانه استغراق فلومهای با گلوگاه ...

longitudinal slope. Flow Measurement and Instrumentation, 79, 101919.