مدلسازی جریان همرفت طبیعی در محیط متخلخل ناهمگن با استفاده از شبکه عصبی کانولوشنی خود رمز نگار

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 دانشجو/ دانشگاه تربیت مدرس

2 گروه مهندسی محیط زیست، دانشکده عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران

چکیده

جریان همرفت طبیعی، یک پدیده فیزیکی مهم در محیط متخلخل است. این نوع جریان در پدیده‌های مختلف مانند مخازن زمین گرمایی و سیستم‌های ازدیاد برداشت نفت قابل مشاهده است. یک چالش مهم در مدلسازی عددی جریان همرفت طبیعی زمان زیاد محاسبات است که منجر به طولانی شدن فرایند مدلسازی برای ساعت‌ها و روزهای زیادی می‌گردد. این مشکل خصوصا در مواردی مانند تحلیل عدم قطعیت و تحلیل حساسیت که نیازمند تکرار چند باره فرایند مدلسازی است و همچنین مسائل ناهمگن و با ابعاد بالا، محسوس‌تر می‌باشد. در این مقاله، سعی شده که از ظرفیت‌های ابزار جدید شبکه عصبی کانولوشنی خود رمزنگار برای غلبه بر چالش زمان محاسبات همراه با تولید جواب‌هایی با دقت بالا در مدلسازی جریان همرفت طبیعی استفاده شود. دو هدف کلی از این پژوهش مورد انتظار است: 1) توسعه مدل شبکه عصبی کانولوشنی خودرمزنگار به عنوان ابزار مدلسازی مستقیم و تحلیل عدم قطعیت 2) بررسی عملکرد شبکه عصبی کانولوشنی خودرمزنگار برای مدلسازی معکوس و تخمین پارامترهای موثر در جریان همرفت طبیعی در محیط متخلخل. برای دستیابی به این اهداف، 5000 زوج داده آموزش با کمک مدلسازی عددی تولید شده است. داده‌های ورودی شامل تصاویر نقشه‌های ناهمگن عدد رایلی به عنوان ورودی مدل، و تصاویر خروجی نقشه‌های توزیع دما در محیط متخلخل می‌باشند. نتایج ارزیابی شبکه عصبی نشان می‌دهد شاخص ضریب تعیین برای مدلسازی مستقیم با استفاده از 2000 داده آموزش و برای مدلسازی معکوس با استفاده از 5000 داده بالای 0.89 می‌باشد.

کلیدواژه‌ها


Arefin, A.M.E. (2016). Thermal analysis of modified pin fin heat sink for natural convection. In 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 1-5). IEEE.
Ataei-Dadavi, I., Chakkingal, M., Kenjeres, S., Kleijn, C.R. and Tummers, M.J. (2019). Flow and heat transfer measurements in natural convection in coarse-grained porous media. International Journal of Heat and Mass Transfer, 130, 575-584.
Balaji, C., Srinivasan, B. and Gedupudi, S. (2020). Heat transfer engineering: fundamentals and techniques. Academic Press.
Braester, C. and Vadasz, P. (1993). The effect of a weak heterogeneity of a porous medium on natural convection. Journal of Fluid Mechanics, 254, 345-362.
Fajraoui, N., Fahs, M., Younes, A. and Sudret, B. (2017). Analyzing natural convection in porous enclosure with polynomial chaos expansions: Effect of thermal dispersion, anisotropic permeability and heterogeneity. International Journal of Heat and Mass Transfer, 115, 205-224.
Gu, J., Liu, T., Wang, X., Wang, G., Cai, J. and Chen, T. (2018). Recent advances in convolutional neural networks, Pattern Recognit. 77, 354–377.
He, Q., Barajas-Solano, D., Tartakovsky, G. and Tartakovsky, A.M. (2020). Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Advances in Water Resources, 141, 103610.
Hur, C. and Kang, S. (2019). Entropy-based pruning method for convolutional neural networks. The Journal of Supercomputing, 75(6), 2950-2963.
Ji, X., Yan, Q., Huang, D., Wu, B., Xu, X., Zhang, A., ... and Wu, M. (2021). Filtered selective search and evenly distributed convolutional neural networks for casting defects recognition. Journal of Materials Processing Technology, 292, 117064.
Jiang, Z., Tahmasebi, P. and Mao, Z. (2021). Deep residual U-net convolution neural networks with autoregressive strategy for fluid flow predictions in large-scale geosystems. Advances in Water Resources, 150, 103878.
Kamrava, S., Tahmasebi, P. and Sahimi, M. (2020). Linking morphology of porous media to their macroscopic permeability by deep learning. Transport in Porous Media, 131(2), 427-448.
Kreyenberg, P.J., Bauser, H.H. and Roth, K. (2019). Velocity Field Estimation on Density‐Driven Solute Transport With a Convolutional Neural Network. Water Resources Research, 55(8), 7275-7293.
Kumar, D., Roshni, T., Singh, A., Jha, M.K. and Samui, P. (2020). Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: a comparative study. Earth Science Informatics, 13(4), 1237-1250.
Mo, S., Zhu, Y., Zabaras, N., Shi, X. and Wu, J. (2019). Deep convolutional encoder‐decoder networks for uncertainty quantification of dynamic multiphase flow in heterogeneous media. Water Resources Research, 55(1), 703-728.
Nield, D.A. and Bejan, A. (2017). Convection in Porous Media, Springer International Publishing, Cham.
Rajabi, M.M., Ataie-Ashtiani, B. and Simmons, C.T. (2015). Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations. Journal of Hydrology, 520, 101-122.
Rajabi, M.M., Fahs, M., Panjehfouladgaran, A., Ataie-Ashtiani, B., Simmons, C.T. and Belfort, B. (2020). Uncertainty quantification and global sensitivity analysis of double-diffusive natural convection in a porous enclosure. International Journal of Heat and Mass Transfer, 162, 120291.
Rajabi, M.M., Javaran, M.R.H., Bah, A.O., Frey, G., Le Ber, F., Lehmann, F. and Fahs, M. (2022). Analyzing the efficiency and robustness of deep convolutional neural networks for modeling natural convection in heterogeneous porous media. International Journal of Heat and Mass Transfer, 183, 122131.
Ronneberger, O., Fischer, P. and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, Springer, Cham, 234-241.
Shen C. (2018). A transdisciplinary review of deep learning research and its relevance for water resources scientists, Water Resour. Res. 54(11), 8558–8593.
Soboleva, E.B. (2018). Density-driven convection in an inhomogeneous geothermal reservoir. International Journal of Heat and Mass Transfer, 127, 784-798.
Tahmasebi, P., Kamrava, S., Bai, T., Sahimi, M. (2020). Machine learning in geo-and environmental sciences: from small to large scale, Adv. Water Resour., 142, 103619. https://doi.org/10.1016/ j.advwatres.2020.103619
Tartakovsky, A.M., Marrero, C.O., Perdikaris, P., Tartakovsky, G.D. and Barajas‐Solano, D. (2020). Physics‐informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resources Research, 56(5), e2019WR026731.
Varol, Y., Oztop, H.F., and Avci, E. (2008). Estimation of thermal and flow fields due to natural convection using support vector machines (SVM) in a porous cavity with discrete heat sources, Int. Commun. Heat Mass Transf. 35(8), 928–936.
Vu, M.T. and Jardani, A. (2022). Mapping discrete fracture networks using inversion of hydraulic tomography data with convolutional neural network: SegNet-Fracture. Journal of Hydrology, 609, 127752, https://doi.org/10.1016/j.jhydrol. 2022.127752
Wei, H., Zhao, S., Rong, Q. and Bao, H. (2018). Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. International Journal of Heat and Mass Transfer, 127, 908-916.
Zhu, Y. and Zabaras, N. (2018). Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification. Journal of Computational Physics, 366, 415-447.