پیش‌بینی سرعت متوسط عمقی در کانال مرکب با پوشش‌گیاهی در سیلابدشت با استفاده از مدل برنامه‌ریزی بیان ژن

نوع مقاله : مقاله کامل (پژوهشی)

نویسنده

استادیار گروه مهندسی عمران، دانشگاه صنعتی سیرجان، سیرجان

چکیده

هدف از این مطالعه، ارائه یک روش قابل اعتماد و کم هزینه برای پیش‌بینی سرعت متوسط عمقی در کانال مرکب با وجود پوشش‌گیاهی در سیلابدشت می‌باشد، به این منظور روش هوشمند برنامه‌ریزی بیان ژن (GEP)‌مورد توجه قرار گرفته است. با استفاده از خصوصیات جریان و پوشش گیاهی، نه فراسنجه بدون بعد استخراج و برای محاسبه متغیر خروجی بدون ‌بعد سرعت (نسبت سرعت متوسط عمقی به متوسط سرعت در مقطع) مورد استفاده قرار گرفت. از مجموع 508 داده آزمایشگاهی ارائه شده در مطالعه Tavakoli(2019) برای آموزش و آزمون مدل استفاده شده است. علاوه بر ارائه یک رابطه عمومی برای توزیع سرعت در تمامی عرض کانال مرکب، به دلیل تفاوت قابل توجه مقادیر سرعت در عرض کانال، توابع اختصاصی برای توزیع سرعت در کانال اصلی و سیلابدشت نیز ارائه شده است. به منظور تعیین اهمیت هر یک از متغیرهای ورودی بر پیش‌بینی سرعت در کانال مرکب با پوشش گیاهی در سیلابدشت آنالیز حساسیت انجام و مشخص گردید که پارامتر سایه‌اندازی گیاهان بیشترین تاثیر را در برآورد مدل پیش‌بینی سرعت دارد. نتایج مدل حاضر با روش تحلیلی دوبعدی SKM مقایسه و عملکرد بهتر روابط مبتنی بر GEP نشان داده شده است. ارزیابی عملکرد مدل‌ها بر مبنای شاخص‌های عملکرد نشان داد که مدل ارائه شده توسط GEP با ضریب همبستگی 902/0 و 843/0و ریشه میانگین مربعات خطا 083/0 و 092/0 به ترتیب، در کانال اصلی و سیلابدشت، در پیش‌بینی سرعت به خوبی عمل نموده و در موارد عملی قابل اجرا است.

کلیدواژه‌ها


Abril, J. and Knight, D. (2004). Stage-discharge prediction for rivers in flood applying a depth-averaged model. J. Hydraul. Res., 42(6), 616–629.
Ackers, P. (1991). Hydraulic design of straight compound channels. Hydraulics Research Ltd., Wallingford.
Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H. and Sharifi, A. (2015). Gene expression programming to predict the discharge coefficient in rectangular side weirs. Appl. Soft Comput., 35, 618-628.
Ervine, D.A., Babaeyan-Koopaei, K. and Sellin, R.H.J. (2000). Two-Dimensional Solution for Straight and Meandering Overbank Flow. J. Hydraul. Engrg., 126, 653-669.
Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems,Complex Syst., 13, 87-129.
Ferreira, C. (2002). Gene expression programming in problem solving, in: Roy, R., Koppen, M., Ovaska, S., Furuhashi, T., Hoffmann, F., eds., Soft Computing and Industry: Recent Applications, Springer-Verlag, UK, 635-653.
Fuladipanah, M., Majedi Asl, M. and Haghgooyi, A. (2020). Application of intelligent algorithm to model head-discharge relationship for submerged labyrinth and linear weirs. Journal of Hydraulics, 15(2), 149-164. (In Persian)
Harris, E.L., Babovic, V. and Falconer, R.A. (2003). Velocity predictions in compound channels with vegetated floodplains using genetic programming, International Journal of River Basin Management, 1(2), 117-123.
Kadlec, R.H. (1990). Overland flow in wetlands: Vegetation resistance. J. Hydraul Eng., 116(5), 691–706.
Knight, D.W., Mc Gahey, C., Lamb, R. and Samuels, P.G. (2010). Practical Channel Hydraulics. Taylor & Francis, London, UK.
Khozani, Z.S., Bonakdari, H. and Ebtehaj, I. (2018). An expert system for predicting shear stress distribution in circular open channels using gene expression programming. Water Science and Engineering, 11(2), 167-176.
Khozani, Z.S., Bonakdari, H. and Zaji, A.H. (2016b). Application of soft computing technique in prediction percentage of shear force carried by walls in rectangular channel with non-homogenous roughness. Water Sci. Technol., 73(1), 124-129.
Kisi, O., Emin Emiroglu, M., Bilhan, O. and Guven, A. (2012). Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches. Expert Syst. Appl., 39(3), 3454-3460.
Knight, D.W. and Demetriou, J.D. )1983(. Flood plain and main channel flow interaction. J. Hydraul. Eng., 109)8(, 1073-1092.
Knight, D.W. and Hamed, M.E. )1984(. Boundary shear in symmetrical compound channels. J. Hydraul. Eng., 110(10), 1412-1430.
Knight, D.W. and Shiono, K. (1996). River channel and floodplain hydraulics. In: Anderson, M.G., Walling, D.E., Bates, P.D., eds., Floodplain Processes. Chichester: Wiley, 139-181.
Koza, J.R. (1992). Genetic Programming: on the Programming of Computers by Means of Natural Selection, MIT Press, Massachusetts, USA.
Liu, C., Luo, X., Liu, X. and Yang, K. (2013). Modeling depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. Advances in Water Resources, 60, 148-159.
Mohanta, A. and Patra, K.C. (2021). Gene-expression programming for calculating discharge in meandering compound channels. Sustainable Water Resources Management, 7(3), 1-19.
Naik, B. and Khatua, K.K. (2016). Water surface profile computation for compound channels with narrow flood plains. Arab. J. Sci. Eng., 42(3), 1-15.
Najafzadeh, M., Balf, M.R. and Rashedi, E. (2016). Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. J. Hydroinf., 18(5), 844-867.
Naot, D., Nezu, I. and Nakagawa, H. (1996). Hydrodynamic Behaviour of Partly Vegetated Open Channels, J. Hydr. Engrg. ASCE, 122(11), 625–633.
Nepf, H. (1999). Drag, Turbulence and Diffusion in Flow Through Emergent Vegetation. Water Resources Research, 35, 479–489.
Petryk, S., and Bosmajian, G. (1975). Analysis of flow through vegetation. J. Hydraul. Div., 101(HY7), 871-884.
Rameshwaran, P. and Shiono, K. (2007). Quasi two-dimensional model for straight overbank flows through emergent., J Hydraul. Res., 45(3), 302-315.
Sharifi, S. (2009). Application of evolutionary computation to open channel flow modeling. PhD Thesis in Civil Engineering, University of Birmingham.
Shiono, K. and Knight, D.W. (1991). Turbulent open-channel flows with variable depth across the channel. Journal of Fluid Mechanics, 222, 617-646.
Sung, A.H. (1998). Ranking importance of input parameters of neural networks. Expert Systems with Applications, 15, 405-411.
Tang, X. and Knight D.W. (2008). A general model of lateral depth-averaged velocity distributions for open channel flows. Advances in Water Resources, 31(5), 846-857.
Tang, X. and Knight, D.W. (2009a). Analytical models for velocity distributions in open channel flows. J. Hydraul. Res., 47(4), 418-428.
Tang, X. and Knight, D.W. (2009b). Lateral distributions of stream-wise velocity in compound channels with partially vegetated floodplains. J. Science in China, Series E: Technological Sciences, 52(11), 3357-3362.
Tang, X.N. and Hu, Y.X. (2021). Impact of Partially Covered Vegetation on the Lateral Velocity Distribution of Open Channel Flow. Journal of Geoscience and Environment Protection, 9, 1-10.
Thompson, G.T. and Roberson, J.A. (1976). A theory of flow resistance for vegetated channels. Trans. ASAE, 19-2, 288–293.
Tavakoli, F. (2019).  Experimental study on the effects of vegetation on water surface profile in compound channels, M.Sc. Thesis, Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran.  (In Persian)
Tominaga, A. and Knight, D.W. (2006). Numerical evaluation of secondary flow effects on lateral momentum transfer in overbank flows. In: Proceedings of the International Conference on Fluvial Hydraulics. London: Taylor & Francis, 353-361.
Singh, P.K. and Khatua, K.K. (2021). Lateral dissemination of depth-averaged velocity, boundary shear stress and stage-discharge curves for compound channels. ISH Journal of Hydraulic Engineering, 27(3), 253-266.
Unal, B., Mamak, M., Seckin, G. and Cobaner, M. (2010). Comparison of an ANN approach with 1-D and 2-D methods for estimating discharge capacity of straight compound channels. Advances in Engineering Software, 41, 120-129.
Wu, Y., Falconer, R.A. and Struve, J. (2001). Mathematical Modelling of Tidal Currents in Mangrove Forests, Environmental Modelling and Software, 16, 19–29.
Yang, K., Cao, S. and Knight, D.W. (2007). Flow patterns in compound channels with vegetated floodplains., Journal of Hydraulic Engineering, 133, 148.
Zahiri, A. and Dehghani, A.A. (2009). Flow discharge determination in straight compound channels using ANN. World Academy of Science, Engineering and Technology, 58, 12-15.
Zhang, J., Zhong, Y. and Huai, W. (2018). Transverse distribution of streamwise velocity in open-channel flow with artificial emergent vegetation. Ecological Engineering, 110, 78-86.