تاثیر جریان تحت فشار بر آبشستگی پایه پل در مقاطع مرکب با پوشش گیاهی

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه لرستان

2 عضو هیئت علمی گروه مهندسی آب، دانشکده کشاورزی دانشگاه لرستان

3 گروه مهندسی رودخانه و سواحل، پژوهشکده حفاظت خاک و آبخیزداری، تهران] ایران

چکیده

در زمان بروز پدیده سیلاب در رودخانه‌ها و افزایش تراز سطح آب، اکثراً عرشه پل‌ها مستغرق خواهد شد. در این شرایط جریان عبوری از زیر عرشه بصورت تحت فشار رفتار خواهد کرد. میزان آبشستگی بستر در محدوده پایه‌های پل متاثر از وجود جریان تحت فشارخواهد شد. در این تحقیق به بررسی آزمایشگاهی هیدرولیک جریان نزدیک شونده به عرشه پل در مقاطع مرکب با وجود پوشش گیاهی در سیلابدشت و اثرات جریان تحت فشار در زیر عرشه پل پرداخته شده است. آزمایش‌ها با پوشش گیاهی صُلب غیرمستغرق و با سه عرض مختلف سیلابدشت و چهار تراکم مختلف پوشش گیاهی با سه عمق نسبی متفاوت انجام شده است. با استفاده از نتایج آزمایش‌ها و آنالیز ابعادی رابطه تخمین میزان آبشستگی پایه پل تبیین شده است. نتایج نشان می دهد که نسبت عمق جریان نزدیک شونده به ارتفاع پل و عمق نسبی جریان با ضریب همبستگی پیرسون 9/0 موثرترین عوامل در میزان حداکثر عمق آبشستگی می‌باشند. اگرچه انتظار میرود که به ازای یک عمق نسبی معین، با زبرشدن سیلابدشت، در مقایسه با سیلابدشت صاف، مقدار تنش برشی افزایش یابد اما در تحقیق حاضر بدلیل نوع زبری پوشش های گیاهی در داخل سیلابدشت، با افزایش تراکم پوشش گیاهی (کاهش فاصله ردیف‌های پوشش گیاهی)، تنش برشی 20 درصد کاهش می یابد.

کلیدواژه‌ها


Abed, L.M. (1991). Local scour around bridge piers in pressure flow, Ph.D. Thesis, Colorado State University.
Arneson, L.A., Zevenbergen, L.W., Lagasse, P.F., and Clopper, P.E. (2012). Evaluating Scour at Bridges, Hydraulic Engineering Circular No. 18, Publication No. FHWA-HIF-12-003, 5th ed.
Arneson, L.A. (1997). The effect of pressure‐flow on local scour in bridge openings, Ph.D. Thesis, Colorado State University.
Arneson, L.A. and Abt, S.R. (1999). Vertical Contraction Scour At Bridges With Water Flowing Under Pressure Conditions, Paper presented at the ASCE Compendium, Stream Stability and Scour at Highway Bridges, Reston, VA.
Arneson, L. and Abt, S. (1999). Vertical Contraction Scour at Bridges with Water Flowing Under Pressure Conditions, Transportation Research Report, 98, 10–17.
Cook, W., Barr, P.J., and Halling, M.W. (2015). Bridge failure rate, Journal of Performance of Constructed Facilities, 29(3), https://doi.org/10. 1061/(ASCE)CF.1943-5509.0000571,04014080.
Sonnenwald, F., Stovin, V. and Guymer, I. (2019). Estimating drag coefficient for arrays of rigid cylinders representing emergent vegetation, 57(4), 591-597.
Guo, J., Kerenyi, K., Pagan-Ortiz, J.E. and Flora, K. (2009). Bridge pressure flow scour at clear water threshold condition. Trans. Tianjin Univ., 15(2), 79-94.
Hamidifar, H., Omid, M.H., Keshavarzi, A. (2013). Mean Flow and Turbulence in Compound Channels with Vegetated­ Floodplains. Journal of Agricultural Engineering Research, 14(3), 51-66.
Kang, H. and Choi, S.U. (2006). Turbulence modeling of compound open-channel flows
with and without vegetation on the floodplain using
the Reynolds stress model. Journal of Advances in Water Resources, 29, 1650–1664.
Kumcu, S.Y. (2016). Steady and Unsteady Pressure Scour under Bridges at Clear-Water Conditions, Canadian Journal of Civil Engineering: cjce-2015-0385.R2.
Mohseni, M. (2017). Velocity Distribution and Boundary Shear Stress in a Compound Channel with Emergent, Rigid Vegetation on Floodplain, 8th National Conference on Watershed and Soil and Water Resources Management.
Musleh, F.A. and Cruise, J.F. (2006). Functional relationships of resistance in wide flood plains with rigid unsubmerged vegetation. Journal of hydraulic engineering, 132(2), 163-171.
Nepf, H.M. (1999). Drag turbulence and diffusion in flow through emergent vegetation, Water Resources Research, 35(2), 479-489.
Rameshwaran, P. and Shiono, K. (2007). Quasi two-dimensional model for straight overbank flows through emergent. Journal of Hydraulic Research, 45(3), 302-315.
Rameshwaran, P. and Naden, P.S. (2003). Three-dimensional numerical simulation of compound channel flows, J. Hydraul. Eng., 129(8), 645–652.
Richardson, A. and Davis, S. R. (2001). Evaluating scour at bridges, Retrieved from Hydraulic Engineering Circular No. 18, Publication No. FHWA NHI 01-001, 4th ed.
Richardson, E.V., Simons, D.B. and Lagasse, P.F. (2001) River Engineering for Highway Encroachments - Highways in the River Environment, FHWA NHI 01-004, Federal Highway Administration, Hydraulic Series No. 6, Washington, D.C.
Samadi Rahim, A., Yonesi, H.A., Shahinejad, B. and Torabipoudeh, H. (2021), Experimental Investigation of Floodplain Vegetation Density Effect on Flow Hydraulic in Divergent Compound Channels, Journal of Hydraulics, 16(1), 111-130.
Shiono, K. and Knight, D.W. (1991). Turbulent open-channel flows with variable depth across the channel, Journal of Fluid Mech., 222, 617-646
Tang, X. and Knight, D. W. (2009). Lateral Distributions of Streamwise Velocity in Compound Channels with Partially Vegetated Floodplains, Journal of Science in China Series E: Technological Sciences, 52, 3357-3362.
Tanino, Y. and Nepf, H.M. (2008). Laboratory investigation of mean drag in a random array of rigid, emergent cylinders, Journal of Hydraulic Engineering, 134(1), 34–41.
Umbrell, E.R., Young, G.K., Stein, S.M. and Jones, J.S. (1998). Clear-Water Contraction Score Under Bridges in Pressure Flow, Journal of Hydraulic Engineering, 124(2), 236–240.
Shan, Y.Q., Liu, C., Luo, M.-K. and Yang, K.-J. (2016). A simple method for estimating bed shear stress in smooth and vegetated compound channels, Journal of Hydrodynamics, 28(3), 497-505.
Zarrati, A.R, Jin, Y.C. and Karimpour, S. (2008). Semianalytical Model for Shear Stress Distribution in Simple and Compound Open Channels, Journal of Hydraulic Engineering, 134(2), 205-215.
Zhai, Y. (2010). Time-dependent scour depth under bridge-submerged flow, Thesis presented in partial fulfillment of requirements for MS degree, the Graduate Collage at the University of Nebraska.