Azizian, A. (2019). The Effects of Topographic Map Scale and Costs of Land Surveying on Geometric Model and Flood Inundation Mapping. Water Resource Management, 33(4), 1315–1333.
Azizian, A. and Samadi, A. (2017). 2D flood simulation in the environment of HEC-RAS 5 numerical model, Parsia Publications. (In Persian)
Garousi-Nejad, I., Tarboton, D., Aboutalebi, M. and Torres-Rua, A. (2019). Data For Terrain
Analysis Enhancements to the Height Above Nearest Drainage Flood Inundation Mapping Method. HydroShare Database.
Godbout, L.D. (2018). Error assessment for Height Above the Nearest Drainage Inundation Mapping. Master of Science in Engineering thesis, The University of Texas at Austin.
HEC (Hydrologic Engineering Center). (2010). HEC-RAS River Analysis System-User manual. Version 4.1. Davis, CA: US Army Corps of Engineering, Hydrologic Engineering Center.
Liu, Y.Y., Maidment, D.R., Tarboton, D.G., Zheng, X. and Wang, S. (2018). A CyberGIS Integration and Computation Framework for High-Resolution Continental-Scale Flood Inundation Mapping. Journal of the American Water Resources Association (JAWRA), 54(4), 770-784.
Liu, Y.Y., Maidment, D.R., Tarboton, D.G., Zheng, X., Yildirim, A., Sazib, N.S. and Wang, S. (2016). A CyberGIS Approach to Generating High-resolution Height above Nearest Drainage (HAND) Raster for National Flood Mapping, in CyberGIS 16, The Third International Conference on CyberGIS and Geospatial Data Science, edited, Urbana, Illinois.
Nobre, A.D., Cuartas, L.A., Hodnett, M., Rennó, C., Rodrigues, G.O., Silveira, A., Waterloo, M. and Saleska, S. (2011). Height above the nearest drainage hydrologically relevant new terrain model. Journal of Hydrology, 404, 13-29.
Nobre, A.D., Cuartas, L.A., Momo, M.R., Severo, D.L., Pinheiro, A. and Nobre, C.A. (2016). HAND contour: a new proxy predictor of inundation extent. Hydrological Processes, 30(2), 320-333.
Nobre, A.D., Cuartas L. A., Hodnett M., Rennó C. D., Rodrigues G., Silveira A., Waterloo
M., & Saleska S. (2011). Height Above the Nearest Drainage – a hydrologically relevant new terrain model. Journal of Hydrology, 404(1–2), 13-29.
Nobre CA, Young AF, Saldiva P, Marengo JA, Nobre AD, Alves S, Silva GCM, Lombardo M. (2010). Vulnerabilities das Megacities Brasileiras às Mudanças Climáticas: Região Metropolitana de São Paulo.
Rahmati, O., Kornejady A., Samadi M., Nobre A. D., and Melesse A. M. (2018). Development of an automated GIS tool for reproducing the HAND terrain model. Environmental Modelling & Software, 102, 1-12.
Speckhann, G.A., Borges Chaffe, P.L., Fabris Goerl, R., Abreu, J.J.D., Altamirano Flores, J.A. (2017). Flood hazard mapping in Southern Brazil: a combination of flow frequency analysis and the HAND model. Hydrol. Sci. J. 8 (10), 200-215.
Tarboton, D. G. (2017). Terrain Analysis Using Digital Elevation Models (TauDEM), Utah
Water Research Laboratory, Utah State University.
Tarboton D. (1997). A new method for the determination of flow directions and contributing areas in grid digital elevation models. Water Resources Research 33, 309–319.
USGS (US Geological Survey) (2016). Shuttle Radar Topography Mission (SRTM) 1 Arc Second Global. Available from:
https://lta.cr.usgs.gov/ SRTM1Arc [Accessed 4 December 2017].
Zheng, X. (2015).Hydraulic Fabric: An Information Framework for River Channel Cross Section Data.” Master’s dissertation, University of Texas at Austin, Austin, TX.
Zheng, X., D. Maidment, Y. Liu, D.G. Tarboton, and P. Lin. (2016). “From Forecast Hydrology to Real-Time Inundation Mapping at Continental Scale.” American Geophysical Union (AGU), Fall Meeting 2016.
Zheng, X., Tarboton, D.G., Maidment, D.R., Liu, Y.Y. and Passalacqua, P. (2018). River Channel Geometry and Rating Curve Estimation Using Height Above the Nearest Drainage. JAWRA Journal of the American Water Resources Association.
Zheng, X., Maidment, D.R., Tarboton, D.G., Liu, Y.Y. and Passalacqua, P. (2018). GeoFlood: Large-Scale Flood Inundation Mapping Based on High-Resolution Terrain Analysis. Water Resources Research, 54(12), 10013-10033.