مدل‏سازی عددی پارامترهای مؤثر بر جریان از روی هواده سرریز‌ شوت و غلظت هوا در پایین‌دست آن

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد بیجار، بیجار، ایران

چکیده

برای حفاظت سازه‌های هیدرولیکی نظیر سرریز‌ها، شوت‌ها و تخلیه‏کننده‌های تحتانی در مقابل کاویتاسیون، به‏طور معمول مقداری هوا به جریان در نواحی با شاخص کاویتاسیون کمتر از مقدار بحرانی، اضافه می‌گردد. با استفاده از هوادهنده‌ها می‌توان از فرسایش‌های ناشی از کاویتاسیون بر سطوح سرریز، جلوگیری نمود. معمولاً هوادهنده‌ها روی کف و گاهی بر دیواره‌های جانبی سرریز نصب و باعث جدایی جریان‌های با سرعت بالا از سطح سرریز شده و با وارد کردن مصنوعی هوا به جریان، از فرسایش در مرزهای صلب جلوگیری می‌کنند. بیشتر آزمایش‌های انجام شده ورود و خروج هوا بر غلظت متوسط هوای جریان متمرکز بوده و نیاز به اندازه‌گیری مقدار و نحوه خروج هوا از جریان می‌باشد. لذا در تحقیق حاضر با استفاده از داده‌های آزمایشگاهی فیشر (2007) جهت شبیه‌سازی عددی جریان عبوری از هواده، به بررسی تغییرات غلظت هوا در طول بستر شوت پرداخته شده است. بدین منظور جهت مدل‌سازی جریان دوفازی هوا–آب از نرم‌افزار FLUENT استفاده شده و طول پرش جت جریان به عنوان عاملی مهم و تأثیرگذار در ورود هوا به جریان ملاک واسنجی قرار گرفته است. با توجه به اهمیت نقطه برخورد جریان به بستر شوت، نقطه مذکور به عنوان مرجع محاسبات در رابطه قرار گرفت. به طور کلی نتایج نشان داد که غلظت هوای بستر پایین‌دست هواده‌ها با افزایش عدد فرود، ارتفاع رمپ، ارتفاع پله و زاویه رمپ افزایش و با افزایش ارتفاع آب بالادست هواده، کاهش می‌یابد و با افزایش شیب شوت ورود هوا به جریان افزایش یافته و تغییرات غلظت هوا کاهش می‌یابد، لذا نیاز به حضور هواده کمتر می‌گردد.

کلیدواژه‌ها


Arantes, E.J., Porto, P.M., Gulliver, J.S., Lima, A.C.M. and Schulz, H.E. (2010). Lower Nappe Aeration in Smooth Channels: Experimental Data and Numerical Simulation. Annals of the Brazilian Academy of Sciences, 82(2), 521-537.
Aydin, M.C. and Ozturk, M. (2009). Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators. Can. J. Civ. Eng., 36(5), 826–838.
Aydin, M.C., Isik, E. and Ulu, A.E. (2020). Numerical modeling of spillway aerators in high‑head dams. Applied Water Science 10, 42. https://doi.org/10.1007/s13201-019-1126-2.
Azhdary  Moghadam, M. and Nakhaei Zeinali, E. (2017). Numerical investigation of the flow characteristics of aerated overflow after shooting. 16th Iranian Hydraulic Conference, Ardabil, Iran. (in Persian).
Bhajantri, M.R. (2007). Numerical investigations on hydrodynamic characteristics of spillway flows, PhD thesis, Indian Institute of Technology Bombay, Mumbai.
Blake, L.S. (1989). Civil Engineer’s Reference Book. Fourth Edition. Reed Educational and Professional Publishing Ltd.
Bruce, M.S. and Johnson, M.C. (2001). Flow over Ogee spillway: physical and numerical model case study. J. Hydraul. Eng., 127(8), 640–649.
Burgisser, M.F. and Rutschmann, P. (1999). Numerical solution of viscous 2D free surface flows: flow over spillway crest. Proc. 28th IAHR Congress, Technical University, Graz, Austria.
Cederstrom, M., Hammar, L., Johansson, N. and Yang, J. (2000). Modelling of spillway discharge capacity with computational fluid dynamics (CFD). Proceedings of 20th International Congress, ICOLD, Beijing, China.
Channel, P.G. and Doering, J.C. (2007). An evaluation of computational fluid dynamics for spillway modeling. 16th Australian Fluid Mechanics Congress, Gold Coast, Australia.
Chanson, H. (1993). Self-Aerated Flows on Chutes and Spillways, Journal of Hydraulic Engineering, ASCE, 119(2), 220-243.
Ehrenberger, R. (1926). Wasserbewegung in steilen Rinnen (Schußtennen) mit bes. Berücks. d. Selbstbelüftung. Hydrograph. Zentralbureau im Bundesminist. f. Land- u. Forstwirtschaft.
Falvey, H.T. (1990) Cavitation in Chutes and Spillways, Engineering Monograph No.42, Bureau of Reclamation, Denver Office, Colorado.
FLUENT Inc. (2006). User’s Guide, version 6.3.
Gessler D. (2005). CFD modeling of spillway performance. Proceedings of the 2005 World Water and Environmental Resources Congress, R. Walton, ed., Anchorage.
Hager, W.H. (2006). Uniform Aerated Chute Flow, Journal of Hydraulic Engineering, ASCE, 117(4) 528-533.
Higgs J.A. (1997). Folsom dam spillway vortices computational fluid dynamics model studies. Memorandum Report, Water Resources Research Laboratory, Water Resources Services, Denver Technical Centre, Bureau of Reclamation, US Department of Interiors, Denver, Colorado.
Ho, D.K.H., Boyes, K.M. and Donohoo, S.M. (2001). Investigation of spillway behavior under increased maximum flood by Computa tional Fluid Dynamics technique. 14th Australian Fluid Mechanics Conference, Adelaide, Australia.
Kjellesvig, H.M. (1996). Numerical modeling of flow over a spillway, Hydroinformatics, Balkema, Rotterdam, 697–702.
Kramer, K. (2004). Development of Aerated Chute Flow, PHD Thesis, Mitteilungen 183, Versuchsanstalt für Wasserbau Hydrologie und Glaziologie der Eidgenössischen, Technischen Hochschule Zürich.
Kramer, K., Hager, W.H. and Minor, H-E. (2006). Development of Air Concentration on Chute Spillways, Journal of Hydraulic Engineering, ASCE, 132(9), 908-915.
Ozturk M., Aydin M.C. and Aydin S. (2008). Damage limitation – A new spillway aerator. Int. Water Power Dam Constr., 6(June), 36–40.
Ozturk, M. and Aydin, M.C. (2009). Verification of a 3D numerical model for spillway aerator. Math. Comput. App., 14(1), 21–30.
Pfister, M.U. (2007). Schussrinnenbelüfter, Lufttransport Ausgelöst Durch Interne Abflussstruktur, PHD Thesis, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Eidgenössischen Technische Hochschle Zürich.
Savage, B. and Johnson, M. (2001). Flow over Ogee spillway: physical and numerical model case study. J. Hydraul. Eng., 127(8), 640–649.
Tokyay, T. and Kurt, C. (2019). Application of VOF and k-ε turbulence model in simulation of flow over a bottom aerated ramp and step structure. Water SA,  45(2), https://doi.org/10.4314/wsa.v45i2.15.
Yang, J., Teng, P. and Zhang, H. (2019). Experiments and CFD modeling of high-velocity two-phase flows in a large chute aerator facility. Engineering Applications of Computational Fluid Mechanics, 13(1), 48-66, DOI: 10.1080/19942060. 2018.1552201.