تعیین میزان دقت منابع ارتفاعی مختلف جهت برآورد پهنه سیلاب در رودخانه‌های با شرایط ریخت‌شناسی متفاوت

نوع مقاله : مقاله کامل (پژوهشی)

نویسندگان

1 دانشجوی کارشناسی ارشد سازه‌های آبی، گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی کرج، دانشگاه تهران

2 دانشیار، گروه مهندسی آبیاری و آبادانی، دانشگاه تهران

3 استادیار علوم و مهندسی آب، گروه مهندسی علوم و مهندسی آب، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

چکیده

مدیریت رودخانه و کاهش خطرات سیل نیازمند تهیه نقشه‌های حد بستر و پهنه‌بندی سیل است. در این راستا، زمان و هزینه زیاد برداشت زمینی توپوگرافی رودخانه عامل محدود‌کننده بوده است. هدف اصلی از تحقیق حاضر ارزیابی دقت مدل‌های رقومی و ارتفاعی در معرفی هندسه رودخانه‌ها، جهت تعیین پهنه سیلاب و مشخصات هیدرولیکی جریان جهت مطالعات اولیه رودخانه های ایران بوده است. در این مقاله، از مدل‌های رایگان رقومی و ارتفاعی ALOS ، SRTM و ASTER با قدرت تفکیک مکانی 30 متر برای تهیه فایل ورودی هندسه رودخانه در نرم افزار HEC-RAS استفاده گردید. برای ارزیابی ارتباط بین عملکرد مدل‌های رقومی ارتفاعی با ویژگی‌های ریخت‌شناسی رودخانه، چهار رودخانه مختلف: سجاس‌رود (استان زنجان)، طالقانرود (استان البرز)، گرگانرود (استان گلستان) و رودخانه سرباز (استان سیستان و بلوچستان)، مورد نظر قرار گرفت. نتایج نشان‌دهنده‌ی عملکرد بهتر مدل ALOS در مقایسه با ASTER و SRTM می-باشد. در تعیین عرض و پهنه سیلاب با مدل ALOS، کم‌ترین خطا با شاخص آماری RMSE بین 3/2 تا 6/8 متر؛ و با شاخص F در حدود 80 درصد حاصل شده است. در تعیین تراز سطح آب سیلاب، خطایMAPE منابع ارتفاعی ALOS و SRTM رودخانه‌های سجاس‌رود، سرباز و طالقانرود زیر 1 درصد بوده است. با مقایسه پلان و الگوی پخش سیلاب شبیه‌سازی شده و همچنین دقت بالای مدل ALOS در تعیین تراز سطح آب، توانایی بالای این مدل در شبیه‌سازی سیلاب رودخانه اثبات می‌گردد. بطورکلی، عملکرد مدل‌های رقومی و ارتفاعی مورد مطالعه در پهنه‌بندی رودخانه‌های عریض و مستقیم بهتر از رودخانه‌های باریک و پیچانرودی می‌باشد.

کلیدواژه‌ها


Adams, T., Chen, S., Davis, R., Schade, T., and Lee, D. (2010). The Ohio River Community HEC-RAS Model. World Environmental and Water Resources Congress 2010. doi:10.1061/41114(371)160
Anees, M.T., Abdullah, K., Nawawi, M.N.M., Ab Rahman, N.N.N., Piah, A.R.M., Zakaria, N.A., and Mohd Omar, A.K. (2016). Numerical modeling techniques for flood analysis. Journal of African Earth Sciences, 124, 478–486. doi: 10.1016/j.jafrearsci.2016.10.001
Arash, A.M., Yasi, M., Azizian, A. and Farhoudi, J. (2019). Studying Adequacy of ALOS, ASTER and SRTM DEMs for Hydraulic Modelling and Inundation Mapping in Areas with Data Scarcity. 7th Comprehensive Conference on Flood Engineering and Management., Tehran, Iran. (In Persian)
Azizian, A. (2019). The Effects of Topographic Map Scale and Costs of Land Surveying on Geometric Model and Flood Inundation Mapping. Water resources management, 33, 1315-1333. doi: 10.1007/s11269-019-2202-y.
Bagheri, A. and Torkaman Zadeh, M.H. (2018). Flood Hazard Mapping in Gabrik Watershed. J. Water Engeering. 6(4), 249-256. (In Persian)
Bates, P.D., Horritt, M.S., Aronica, G. and Beven, K. (2004). Bayesian updating of flood inundation likelihoods conditioned on flood extent data. Hydrological Processes, 18(17), 3347–3370. doi:10.1002/hyp.1499
Bates, P.D., Wilson, M. D., Horritt, M. S., Mason, D. C., Holden, N., & Currie, A. (2006). Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: Data analysis and modelling. Journal of Hydrology, 328(1-2), 306–318. doi: 10.1016/j.jhydrol.2005.12. 028
Burdziakowski, P. (2018). UAV in todays photogrammetry - application areas and challenges. International Multidisciplinary Scientific GeoConference: SGEM, 18(2.3), 241-248.
Chen, H., Liang, Q., Liu, Y. and Xie, S. (2018). Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling. Journal of Hydrology, 559, 56–70. doi: 10.1016 /j.jhydrol.2018.01.056
Cook, A. and Merwade, V. (2009). Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. Journal of Hydrology, 377(1-2), 131–142. doi: 10.1016/j.jhydrol.2009.08.015 
Costabile, P. and Macchione, F. (2015). Enhancing river model set-up for 2-D dynamic flood modelling. Environmental Modelling & Software, 67, 89–107. doi: 10.1016/j.envsoft.2015.01.009
CRED & UNISDR (2015). The human costs of weather-related disasters.
Grimaldi, S., Li, Y., Pauwels, V.R.N. and Walker, J. P. (2016). Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surveys in Geophysics, 37(5), 977–1034. doi:10.1007/s10712-016-9378-y
Grimaldi, S., Li, Y., Walker, J.P. and Pauwels, V.R. N. (2018). Effective Representation of River Geometry in Hydraulic Flood Forecast Models. Water Resources Research, 54(2), 1031–1057. doi:10.1002/2017wr021765
Haile, A. and Rientjes, T. (2005). Effects of LiDAR DEM resolution in flood modelling: A model sensitivity study for the city of Tegucigalpa, Honduras. In Proceedings of the ISPRS WG III/3, III/4, V/3 Laser Scanning Workshop (pp. 168–173). Enschede, the Netherlands: ISPRS.
Heidari, K., Momeni Goldiani, M. and Mardokh Por, A.R. (2019). Flood Hazard Mapping Using HEC-RAS (Case study: Emam Zadeh Ebrahim River, Gilan Province). 6th National Conference on Applied research in Civil Eng., Architecture and Urban Management., Tehran, Iran.
Horritt, M.S. and Bates, P.D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 268(1-4), 87–99. doi:10.1016/s0022-1694(02)00121-x
Jamali, B., Löwe, R., Bach, P.M., Urich, C., Arnbjerg-Nielsen, K. and Deletic, A. (2018). A rapid urban flood inundation and damage assessment model. Journal of Hydrology, 564, 1085–1098. doi: 10.1016/j.jhydrol.2018.07.064
Jarihani, A.A., Callow, J.N., McVicar, T.R., Van Niel, T.G. and Larsen, J.R. (2015). Satellite-derived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. Journal of Hydrology, 524, 489–506. doi: 10.1016/j.jhydrol.2015.02.049
Jarihani, A.A., Callow, N., Johansen, K. and Gouweleeuw, B. (2013). Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. Journal of Hydrology, 505, 78-90. doi: 10.1016/j.jhydrol.2013.09.010
Jung, Y. and Merwade, V. (2012). Uncertainty Quantification in Flood Inundation Mapping Using Generalized Likelihood Uncertainty Estimate and Sensitivity Analysis. Journal of Hydrologic Engineering, 17(4), 507–520. doi:10.1061/(asce)he. 1943-5584.0000476
Jung, Y. and Merwade, V. (2014). Estimation of uncertainty propagation in flood inundation mapping using a 1-D hydraulic model. Hydrological Processes, 29(4), 624–640. doi:10.1002/hyp.10185
Khanna, R.K., Agrawal, C.K. and Kumar, P., (2018). Remote sensing and GIS applications in flood management. Central Water Commission New Delhi, India.
Kwak, Y. (2017). Nationwide Flood Monitoring for Disaster Risk Reduction Using Multiple Satellite Data. ISPRS International Journal of Geo-Information, 6(7), 203. doi:10.3390/ijgi6070203
Kumar, A., Dasgupta, A., Lokhande, S. and Ramsankaran, R. (2019). Benchmarking the Indian National CartoDEM against SRTM for 1D Hydraulic Modelling. International Journal of River Basin Management, 1–39. doi:10.1080/15715124. 2019.1606816
Mersel, M.K., Smith, L.C., Andreadis, K.M. and Durand, M.T. (2013). Estimation of river depth from remotely sensed hydraulic relationships. Water Resources Research, 49(6), 3165–3179. doi:10.1002 /wrcr.20176
Merwade, V., Cook, A. and Coonrod, J. (2008b). GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping. Environmental Modelling & Software, 23(10-11), 1300–1311. doi: 10.1016/j.envsoft.2008 .03.005
Merwade, V., Olivera, F., Arabi, M. and Edleman, S. (2008a). Uncertainty in Flood Inundation Mapping: Current Issues and Future Directions. Journal of Hydrologic Engineering, 13(7), 608–620. doi:10.1061/(asce)1084-0699(2008)13:7(608)
Papaioannou, G., Loukas, A., Vasiliades, L. and Aronica, G. T. (2016). Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Natural Hazards, 83(S1), 117–132. doi:10.1007/s11069-016-2382-1
Puno, G.R., Amper, R.A.L., Opiso, E.M. and Cipriano, J.A.B. (2019). Mapping and analysis of flood scenarios using numerical models and GIS techniques. Spatial Information Research. doi: 10.1007/s41324-019-00280-2
Saadatseresht, M., Hashempour, A.H., and Hasanlou, M. (2015). UAV photogrammetry: a practical solution for challenging mapping projects. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(1), 619.
Saksena, S. and Merwade, V. (2015). Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. Journal of Hydrology, 530, 180–194. doi: 10.1016/j.jhydrol. 2015.09.069
Sanders, B.F. (2007). Evaluation of on-line DEMs for flood inundation modeling. Advances in Water Resources, 30(8), 1831–1843. doi: 10.1016/j. advwatres.2007.02.005
Shahbazi, Ch. (2016). Comparison Evaluation of DTM Production Using LiDAR Aerial and Satellite Image Data, M.Sc Thesis, Islamic Azad University Shahrood Branch, Shahrood, 107p. (In Persian)
Sistani Badouie, M., Negaresh H. and Fotouhi, S. (2017).       Investigating the Effect of Construction Structures on River Flood Extent Using HEC-RAS and ArcGIS Softwares. Case study: Babolrood River, Mazandaran. J. Geography and Environmental Hazards. 6(22), 163-182. (In Persian)
Special Reporting Committee on Iran Floods (2019). Report of River Engineering and Hydraulic Structures Working Group. University of Tehran. (In Persian)
Teng, J., Vaze, J., Dutta, D. and Marvanek, S. (2015). Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM. Water Resources Management, 29(8), 2619–2636. doi:10.1007/ s11269-015-0960-8
World Meteorological Organization. (2014). Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970-2012). World Meteorological Organization.
Yasi, M. and Nasiri Soltan Ahmadi, L. (2017). Simulation and Evaluation of Perennial Rivers Flows with HEC-RAS and RubarBE Models. J. Water and Soil Science-University of Tabriz. 27(2), 225-236. (In Persian).