Application of Intelligent Algorithm to Model Head-Discharge Relationship for Submerged Labyrinth and Linear Weirs

Mehdi Fuladipanah 1*, Mehdi Majedi Asl 2, Aida Haghgooyi 3

1- Assistant Professor, Department of Civil Engineering, Ramhormoz Branch, Islamic Azad University, Ramhormoz, Iran.
2- Assistant Professor, Department of Civil Engineering, Maragheh University, Maragheh, Iran.
3- Undergraduate student, Department of Civil Engineering, Maragheh University, Maragheh, Iran.

* fuladipanah@gmail.com

Received: 22 May 2020, Accepted: 22 July 2020

Abstract

Introduction: Weirs are hydraulic structures with a various application as a flow measurement, flow diverting, and/or flow control. Weirs are designed under free-flow conditions meaning tailwater is lower than weir crest. In this state, flow passing the weir is governed by the weir geometry and the approaching flow condition. When the tail-water exceeds the crest elevation, the weir is submerged. Under submerged conditions for a certain discharge, a higher upstream head is required to pass the flow relative to the free flow state. Therefore, the submerged head-discharge relationship is different from free condition one. According to the literature, there are three main methods to extract the relationship between dependent and independent variables: experimental methods, classic regression equations, and intelligent algorithms. The previous researches showed that more studies have been performed experimentally to predict the head-discharge relationship for linear and labyrinth weirs while using artificial intelligence has been proved to include more accuracy to adapt complex hidden relationships among dependent and independent variables. In this paper, two intelligent algorithms namely SVM and GEP have been applied to extract the relationship between a submerged head-discharge function for linear and labyrinth weirs. The results of these two mentioned algorithms were compared with experimental and regression modeling.

Methodology: To simulate \(H/H_0 \) using SVM and GEP, two scenarios were defined. At the first scenario, the amount of \(H/H_0 \) for labyrinth submerged weir was modeled using five dimensionless parameters as \(Fr \), \(C_d \), \(H_d/H_0 \), \(H_0/P \) and \(\alpha \). For the SVM algorithm, the Nu-class classification method with Redial Basis Function as Kernel function were selected using setting parameters as \(\gamma \) and \(Nu \). GEP was applied as another algorithm to model \(H/H_0 \) for the labyrinth weir. In the second scenario, SVM and GEP were applied to predict \(H/H_0 \) for the linear submerged weir. To compare the performance assessment of an intelligent algorithm, two types of equations were obtained using classic regression models. The first one was the extracted relationship of Tullis et al. (2007) and the second one was the SPSS regression equation. All simulations were compared with four assessment criteria as root mean square error (RMSE), determination coefficient \((R^2) \), relative error (RE), and standardized developed discrepancy ratio (ZDDR). Sensitivity analysis was the last step of the \(H/H_0 \) prediction.

Results and discussion: Training and testing phases of SVM and GEP were assessed using the above four mentioned assessment criteria. The included dimensionless parameter for the
Application of Intelligent Algorithm to Model submerged labyrinth weir to predict H^*/H_0 were Fr_1, C_d, H_d/H_o, H_d/P and α whereas for the second scenario only Fr_1 and H_d/H_o were opted as the effective parameters. The amount of $RMSE$, R^2, $MARE$ and $ZDDR$ for SVM at the first scenario during training and testing phases were calculated as $(0.0081, 0.9999, 3.34, 66.496)$ and $(0.0104, 0.9996, 1.741, 45.267)$ respectively. Those of GEP were obtained as $(0.2225, 0.9986, 4.42, 23.48)$ and $(0.0157, 0.9992, 0.533, 19.73)$ respectively. According to these values, SVM was selected as the superior model than to GEP. A comparison was done between SVM and other regression simulations. The values of mentioned assessment criteria for Tullis et al.’s relationship and SPSS extracted equation were computed as $(0.02855, 0.9990, 1.756, 19.115)$ and $(0.0307, 0.9990, 8.503, 20.875)$ respectively. Therefore, among all the used predicting the head-discharge relationship of labyrinth submerged weir, the SVM model was selected as the best model. Sensitivity analysis was performed to determine which parameter has the most effect on the head-discharge relationship. This procedure was done with dropping each of five included parameters and computing four mentioned assessment criteria. According to the calculation, the most significant parameter based on the most decrease of SVM accuracy was Fr_1. In the second scenario, a similar calculation was done on the linear submerged weir. The best performance was accrued for the SVM algorithm for training and testing phases. The corresponding accuracy indices values during testing phase for SVM and GEP were $(0.0066, 0.9996, 0.320, 67.91)$ and $(0.0088, 0.9998, 0.5432, 63.73)$ respectively. The priority of SVM performance than to the classic regression equations namely Tullis et al.’s (2007) relationship and SPSS equation were proved with the accuracy indices. The amount of assessment criteria values for two above mentioned models were $(0.0118, 0.9997, 0.653, 60.69)$ and $(0.0507, 0.9965, 3.444, 8.76)$ respectively. According to the sensitivity analysis, the most effective parameters with the highest impact was H_d/H_o in the linear submerged weir.

Conclusion: The results showed that intelligent algorithms have the most performance than to the other classic and experimental relationships to extract the head-discharge relationship for the submerged labyrinth and linear weirs. Of two SVM and GEP models, the first one was the top model for the labyrinth and linear weirs head-discharge relationship prediction. It’s recommended to use an intelligent algorithm to predict and extract the complicated and hidden relationship among dependent and independents variables.

Keywords: SVM algorithm, GEP algorithm, Assessment index, Sensitivity analysis.
کاربرد الگوریتم‌های هوشمند برای مدلسازی رابطه دبی-اشت در
شرايط استغراق سرزيهای کنگرهای و خطي

مهدي فولادی نهان، مهدي ماجدي اصلي، آيضا حقوبي

1- استادیار، گروه عمران، واحد رامهرمز، دانشگاه آزاد اسلامی، رامهرمز، ايران
2- استادیار، گروه عمران، دانشکده فيي و مهندسي، دانشگاه مراغه، مراغه، ايران
3- دانشجوی کارشناسی، گروه مهندسي عمران، دانشگاه مراغه، مراغه، ايران

*fuladipanah@gmail.com

www.jhyd.iau.ir

چکیده: استغراق سرزي در افزود سطح آب پايين دست به ترازي هماسان با پيش از نيز تاز جریان سرزي، ددي عبوری از سرزي را كاهش مي دهد.

هدف ايز پژوهش استفاده از الگوریتم‌های SVM و GEP برای افزایش دقت پيگیری رسوبات سرزي در سرزيهای کنگرهای و به ترتیب مستغرق است. از معرفی‌های \(H^* \) (بار کل بالادست جریان آزاد)؛ \(H_o \) (بار کل بالادست جریان مستقر)، \(P \) (ارتفاع سرزي)، \(H/P \) (سرعت جرين آزاد بالادست)، \(\alpha \) (زاویه دواره جابجایی سرزي) و \(Fr \) (ضريب دوي جرين) بر پایه تفاوت میانگین سرعت بالادست سرزي به دنبال استفاده از SVM مدلسازی و GEP همكاری مقیاس در ترازتی و کنگرهای مستقر، حداقل عدد گرار

دست جریان مستغرق، \(H/\alpha \) به ترتیب در سرزيهای مستقر به ترتیب در سرزيهای کنگرهای و خطي بود. تجزيه و تحليل

کليد واژگان: الگوریتم، SVM، الگوریتم، GEP، شاخص ارزابا، تجربه و تحليل

1- مقدمه

سرزيها، سازه‌ها هستند که برای هدف‌هاي مختلف

مهدف اند. جريان، انحراف جريان، و مهار جريان

استفاده مي‌شود. در ميان طراحي سرزيها، رخداد شرايط

جريان آزاد يعني پايين بودن عمق پايان از تاج سرزي است.

كه در اين ضعيتي، ديد عموري از روی سرزي تابعي از

هندهست سرزي و زيزگي هر جريان بالادست نزيک

شونده به سرزي مي‌باشد. بنابراین تراز سطح آب

پايين دست به ميزاني هماسان با پيش از تراز تاج سرزي.
منطقه‌ای، مثلثی و... در این زمینه懦حی بر ضریب بزرگنمایی در حالت آزاد و

ضریب بزرگنمایی جریان در... به ازای... با دیعبوری در... شرایط مستغرق هستند (Tullis et al., 2007).

![Fig. 1](a) Submerged and free flow parameters, (b) Discharge passing under submerged condition)

معبادهای دیعبوری در روی سرریز مستطیلی در شرایط جریان آزاد به قرار زیر است (Falvey, 2003):

\[Q = \frac{2}{5} C_{R} \sqrt{g} R L H_0 \]

که در این معادله Q دیعبوری از روی سرریز و... با دیعبوری از روی سرریز مستغرق... در شرایط مستغرق، دیده شده است.

![Fig. 2](Labyrinth weir geometric nomenclature)

شکل 2 نمادگذاری فرآیندهای هندسی سرریز کنگرهای بروزی اولیه در زمینه ویژگی‌های هندسی و عملکرد Hay و Taylor (1968) هیدرولیکی این سرریزها توسط... با مقطعهای مستطیلی، مثلثی و... در Taylor (1970) دویستی آن به دنبال انجام شده است. (1968) در پژوهشی به بررسی ضریب بزرگنمایی جریان، به ازای... میزان ممنی از... همکاران.

ضریب جریان در وضعیت مستغرق برای سرریزهای کنگرهای و خطی ممکن است در دیده شده، از دیدگاه... عبوری در حالت آزاد و... در پیوستری روی تاج شرایط... در پایین دست در وضعیت... ارتفاع سرریز،... در سرریز... و... در دیعبوری در شرایط جریان آزاد و... شرایط مستغرق هستند (Tullis et al., 2007).

![Fig. 3](Journal of Hydraulics 15 (2), 2020 152)

ویلیمونت (1947) و Franci (1884) و... تبدیل کرد. محققان مختلف مانند...
است و تأثیر استخراج روي دبي جریان در سرریزهای
کنگره کمتر از سرریزهای خطي است. در پژوهش
آزمایشگاهی که Toluida et al. (1995) انجام دادند مشخص
شد راندمان گذرده سرریزهای کنگره نسبت به
سرریزهای خطي از ارای بار بالا افزایش ذاکر متی چهار
برای افزایش پیدا می کنند. برای این، پژوهش‌های
تجمیعی انجام شده توسط (2007) زیروهان و
درباره سرریز کنگره استفاده شده است.

کامبی سامانی و همکاران (2010)

استخراج در کارایی درمانهای بالادست به دلیل استخراج
موضعی در بالادست دهانه‌های اروجی کاوش می‌باشد.

استخراج در شرایط استخراج، کارآیی دماغه

و سه بعدی یک جریان متین با کاهش دقت اندازه‌گیری

در شرایط آزمایشگاهی می‌باشد. (Dabbling, 2014)

نتایج تحقیقات (2014) دالینگ از سرریزها

در سرریزها اصلاح شده و واضح نشده، نسبت استخراج
افقی می‌باشد. نتایج پژوهش تجاری انجام شده توسط

شناسی داده از سرریز به شرایط استخراج

محدودیت‌های دیت از دو سرریز به نیز

مسطح در شرایط جریان آزاد است. آنان یکی از

افراز درجه استخراج سرریز راندمان گذرده سرریز

که می‌باشد که میزان آن مناسب با نسبت

است به بررسی آزمایشگاهی اثر

Dizabadi et al. (2020)

حوضه‌ای با پندهای سرریز کنگره‌های دری

عوری از روی با راه دیواره جانی 45 درجه تحت

شراط آزاد و مستقره به لحاظ اختلاف مشکلی پدیده می‌رود.

معادله استخراج (1) تا تضعیف معادله

آزمایشگاهی رگرسیونی برای پیش‌بینی میزان

برای سرریزهای کنگره تحت شرایط استخراج به

قارن معادله‌های 5 و 6 پیش‌بینی شده است:

\[
\frac{H_o^*}{H_0} = -0.00594(\frac{H_o}{H_0})^4 - 0.07508(\frac{H_o}{H_0})^3 + 0.35338(\frac{H_o}{H_0})^4 + 0.70276(\frac{H_o}{H_0})^3 - 0.27824(\frac{H_o}{H_0})^2 + 0.10110(\frac{H_o}{H_0}) + 0.99264
\]

1 Support Vector Machine
فاصله بین صفحه و نظیر کوکرل نمونه‌های آموزشی تعیین می‌شود. کوکرل فاصله از صفحه به دارایی بر پایه معادله 1 است. در واقع حاشیه با دو بردار کردن این فاصله محاسبه می‌شود.

معادله‌ای این صفحه به قرار است:

\[W.X + b = 0 \]

که در این معادله که برداری است که شمار محله‌ای آن معادل با شمار ویژه‌های متان آن تابع است. در فضای دو بعدی که داده‌ها دو ویژگی و یک برچسب کلاسیک تعریف می‌شوند معادله‌ای همانند معادله 7 بازنویسی می‌شود:

\[w_o + w_1x_1 + w_2x_2 = 0 \]

برای مینی‌مینومینا (نقطه‌ها) واقع در بالای صفحه در نامعادله‌ی 9 و نقطه‌های زیر این صفحه در نامعادله‌ی 10 صفحه می‌کند:

\[w_o + w_1x_1 + w_2x_2 \geq 0 \]
\[w_o + w_1x_1 + w_2x_2 \leq 0 \]

با قطعیتی و \(w \) و \(b \) می‌توان نوشته:

\[w_o + w_1x_1 + w_2x_2 + 1 \text{ if } y_i = +1 \]
\[w_o + w_1x_1 + w_2x_2 - 1 \text{ if } y_i = -1 \]

این معادله با که در نمونه‌های وزن صفحه ممکن است \(H_1 \) متعلق به نمونه‌ها و محاسبه شده از طریق 2 ست. معادله 1 است. همهی نمونه‌ها که به درستی متعلق به کلاس 1 است. در حقیقت با یک داده در فضای دو بعدی \(H_2 \) قرار دارد نشان می‌دهد که بردار روش محصول باید حالت سطحی اصلی از تابع‌های کرنش است. این تابع با هم صورت حاصل در محصول داده‌ها تعیین می‌شود. در حقيقة، با انتقال از فضای دو بعدی به فضای ویژگی‌ها با استفاده از یک داده معنی‌داری دارد به یک داده سطحی. با انتقال داده‌ها از فضای دو بعدی به فضای ویژگی‌ها، یک داده سطحی برای تابع دو بعدی است و یک داده سطحی است.

\[W^T \Phi(x_i) + b = 0 \]

که در آن \(W \) تابع کرنش مستقیم و \(\Phi(x_i) \) و \(b \) و \(x_i \) هستند.

\[\text{انحلاب } W^T \Phi(x_i) + b = 0 \]

که از آن در جدول 1 ارائه شده است. انتخاب نمی‌تواند کرنش در میان آزمون و یک انجام نماید.

مقدماتی این مسأله به صورت شده است. SVM یا جی‌پی‌ام یکی از روش‌های پیشرفته است که از تغییرات در نمایشگری به نام کرنش برای معاینه و چیپس‌های داده‌ها استفاده می‌شود.

\[\text{SVM} \]

1. Gene Expression Programming
جدول ۲ انواع تابع کرنل

<table>
<thead>
<tr>
<th>Kernell name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>(K(x_i, x_j) = (x_i, x_j))</td>
</tr>
<tr>
<td>Polynomial</td>
<td>(K(x_i, x_j) = [(x_i, x_j) + 1]^4)</td>
</tr>
<tr>
<td>Redial Basis Function or RBF</td>
<td>(K(x_i, x_j) = \exp[-\frac{‖x_i-x_j‖^2}{2\sigma^2}])</td>
</tr>
<tr>
<td>Exponential Redial Basis Function or ERBF</td>
<td>(K(x_i, x_j) = \tanh[-\alpha(x_i, x_j) + c])</td>
</tr>
</tbody>
</table>

\(\alpha \) و \(c \) مقدار مناسبی از جمله‌های مختلفی می‌باشند که باید به این صورت انتخاب شوند تا در نهایت پاسخ مناسب را دریافت نمایند.

GEP

بر اساس این افکاده، تابع هدف برای مقایسه پاسخ‌های مختلف حل مسئله طی فرآیندی گام به گام تصحیح ساختار داده‌ها به کار می‌رود تا در نهایت یک پاسخ مناسب را دریافت نماید. در این الگوریتم، افراد به صورت رشته‌های خطی با طول ثابت (ژن‌ها یا کروموزوم) کدگذاری می‌شوند و پس از آن به صورت متنوعی با اندازه‌های مختلف (بیان درختی) نمایش داده می‌شوند. تولید جمعیت اولیه از راه‌هایی است که می‌تواند از طریق تصادفی یا با استفاده از مراحلی به آن مانند تولید جمعیت GEP، تولید گروه‌ها توسط یک راه‌حل مشابه با استفاده از مراحل مختلفین انجام شود. سپس کروموزوم‌ها به صورت بیان درختی نشان می‌دهند که این می‌تواند با پاسخ‌های ارزیابی‌های داشته باشد. تابع برابری بطور معمول به وسیله پردازش‌های کسب‌وکاری و یا نسل‌ها به راه‌حل‌های بهتری دست می‌آورد که می‌تواند برای تولید نسل‌های نو سازگاری با عملکرد پایداری از جمله‌های مختلفی به روش برآورد نامیده می‌شود. اگر کیفیت پاسخ‌های ارزیابی‌های مختلفی بیش از یک راه‌حل بیشتر بود، انتخاب جمعیت‌شده است که در جمعیت‌های مختلفی به طور متوسط بهبود یافته (Chaudhuri, 2010).

شکل ۳ روشدهی الگوریتم GEP

GEP- ۲-۳

شکل‌های ارزیابی عمکرد

برای مقایسه عملکرد مدل‌ها، از شاخص‌های مجزور میانگین مربعات خطا (RMSE)، درصد میانگین قدرمطلق خطای نسبی (MARE) و شاخص تیبی (R²) به کار رفته است.

\[
\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_o_i - x_p_i)^2}
\]

\[
\text{RE} = \frac{100}{N} \sum_{i=1}^{N} \frac{|x_o_i - x_p_i|}{x_o_i}
\]

\[
R^2 = \frac{\sum_{i=1}^{N} (x_o_i - \bar{x}_o)(x_p_i - \bar{x}_p)}{\sqrt{\sum_{i=1}^{N} (x_o_i - \bar{x}_o)^2 \sum_{i=1}^{N} (x_p_i - \bar{x}_p)^2}}
\]
که در این رابطه‌ها w_x و x_L به ترتیب داده‌های مشاهده‌ای و محاسباتی معادله $w_x = x_L$ به ترتیب میزان معیارهای داده‌های مشاهده‌ای و محاسباتی هستند. با توجه به اینکه شاخص‌های معادله‌های 16 تا 18 یافته‌های خطی فکری مستقل و دارای درستی در مورد توزیع خطای ارائه نمی‌دهند، برای رفع این محدودیت (Noori et al., 2010) استفاده از آماره نسبت تفاوت توسه داده شده1 را پیشنهاد دادند:

$$\text{DDR} = \frac{w_x}{x_L}$$

شکل ۴ استقلال خطی متغیرهای مستقل و وابسته

در آدامه‌ها در الگوریتم‌های تکراری شامل نظیره‌ها با سرعت جریان بالادست U, عمق آب بالادست روی تاج سریز در حال آزاد، h_0, عمق آب پایین‌دست روی تاج سریز h_0, بار کل پایین‌دست روی تاج سریز در حالت مستقر، P, ضریب دیبن جریان، C_d, ارتفاع سریز h_0, بار كل جریان بالادست در حال آزاد H_0, عمق جریان روی تاج سریز در حالت مستقر h_0, ژئوپژئو جدایی α, شتاب نرمال β, جرم مخصوس آب γ, لزجت پایه آب μ, کشش سطحی σ, در نظر گرفته شدن. با استفاده از تحلیل ابعادی و نظر صرف‌نظر گردان از اثر کشش سطحی و لزجت متغیرهای یافته‌های یک‌بُعدی به عنوان ورودی الگوریتم‌های GEP, به فرآیند محاسبه $\frac{w_x}{x_L}$ استخراج شد.

1. Developed Discrepancy Ratio
روش‌های اعتبارسنجی پی‌هی‌پی‌سازی کردن میزان Nu به عنوان متغیر اصلی در طی فرآیندهای آموزش و آزمون عمل می‌کند. در نتیجه، با افزایش Nu در زمان افزایش حاشیه، جداسازی کلاس‌ها، خطاهای افزایش می‌یابد. Fan et al. (2005) با توجه به ملاحظه‌های انجام شده در این پژوهش، مشخص شد که مخلوک‌هایی که با سری‌های نا مبتنی nυ-SVM بودند در این الگوریتم، 80 درصد داده‌ها برای آموزش و 20 درصد داده‌ها برای آزمون استفاده شدند. بر مبنای بهبود نتایج میزان حاشیه ارزیابی، تابع کاوالری از نوع RBF و میزان های nυ و Nu به ترتیب 1 و 2 به دست SVM آمدند. ترکیب نهایی فراستحکم‌ها به‌صورت nυ-SVM و GEP انتخاب می‌شود. در شکل 6 نشان داده شده است. در جدول 5 خلاصه نتایج به‌شماره‌گذاری SVM یا GEP در مدل‌های آموزش و آزمون انتخابی است. میزان‌های تابع خطا برای مدل‌های GEP در یک خط به دست می‌آید.

در جدول 6 فراستحکم‌های مواد استفاده‌های GEP در سری‌های کنترلی مدل SVM نشان داده شده است. مدل مورد استفاده از مدل‌های برخی از مدل‌های GEP و SVM 19 است. در تدوینی شکل 5 در جدول 5 میزان‌های مثبت با پلاس پریده‌ای و مثبت با منفی از پل پریده‌ای نشان می‌دهد. در جدول 6 داده شده است. در جدول 4 پارامترهای مورد استفاده از مدل GEP در جدول 5 نشان داده شده است. مدل‌های SVM و C-SVM منفی و مثبت نشان می‌دهد. در جدول 6 داده شده است. در جدول 5 نشان داده شده است. در جدول 4 پارامترهای مورد استفاده از مدل GEP در جدول 5 نشان داده شده است.

جدول 4 Parameters values used to predict Hw/Ho in labyrinth weir in GEP model

<table>
<thead>
<tr>
<th>Parameters</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head size</td>
<td>7</td>
</tr>
<tr>
<td>Chromosomes numbers</td>
<td>30</td>
</tr>
<tr>
<td>Number of genes</td>
<td>3</td>
</tr>
<tr>
<td>Mutation rate</td>
<td>0.044</td>
</tr>
<tr>
<td>Inversion rate</td>
<td>0.1</td>
</tr>
<tr>
<td>One-point recombination rate</td>
<td>0.3</td>
</tr>
<tr>
<td>Two-point recombination rate</td>
<td>0.3</td>
</tr>
<tr>
<td>Gene recombination rate</td>
<td>0.1</td>
</tr>
<tr>
<td>Gene transposition rate</td>
<td>0.1</td>
</tr>
<tr>
<td>IS transposition rate</td>
<td>0.1</td>
</tr>
<tr>
<td>RIS transposition rate</td>
<td>0.1</td>
</tr>
<tr>
<td>Fitness function error type</td>
<td>RMSE</td>
</tr>
</tbody>
</table>

جدول 6 Parameters values used to predict Hw/Ho in labyrinth weir in GEP model

<table>
<thead>
<tr>
<th>Parameters</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head size</td>
<td>7</td>
</tr>
<tr>
<td>Chromosomes numbers</td>
<td>30</td>
</tr>
<tr>
<td>Number of genes</td>
<td>3</td>
</tr>
<tr>
<td>Mutation rate</td>
<td>0.044</td>
</tr>
<tr>
<td>Inversion rate</td>
<td>0.1</td>
</tr>
<tr>
<td>One-point recombination rate</td>
<td>0.3</td>
</tr>
<tr>
<td>Two-point recombination rate</td>
<td>0.3</td>
</tr>
<tr>
<td>Gene recombination rate</td>
<td>0.1</td>
</tr>
<tr>
<td>Gene transposition rate</td>
<td>0.1</td>
</tr>
<tr>
<td>IS transposition rate</td>
<td>0.1</td>
</tr>
<tr>
<td>RIS transposition rate</td>
<td>0.1</td>
</tr>
<tr>
<td>Fitness function error type</td>
<td>RMSE</td>
</tr>
</tbody>
</table>

شکل 5 Expression tree of labyrinth submerged weir regression equation

$$\frac{H_w}{H_o} = C_d \cdot F_r, / \alpha \cdot \text{GEP}$$

در اجرای مدل SVM نیز ترکیب‌های مختلفی از میزان‌های مشابهی از GEP به سبب تمرکز نسبی نسبت به مدل SVM است. مدل‌های برخی از مدل‌های GEP و SVM به‌شکلی که میزان Nu به‌سازی عملکرد کرم‌های ارزیابی مشخص شوند. در مدل‌های برخی از مدل‌های GEP و SVM به‌صورت متغیر افزایش می‌یابد. در مدل‌های GEP و SVM به‌صورت متغیر افزایش می‌یابد. در مدل‌های GEP و SVM به‌صورت متغیر افزایش می‌یابد. در مدل‌های GEP و SVM به‌صورت متغیر افزایش می‌یابد.
ما شاخه محور عمودی زندیک تر است

که نشان از برتري این مدل در پیشبني میزان

در شکل 7 توزیع خطا استاندارد بر مبنای میزان
برای پیش بینی کندنهای مطرخ شده در این پژوهش نشان
داده شده است. برای این شکل، میزان
مدل های SVM مدل های GEP
معادله(5 و معادله(6).
به ترتیب 27/57، 27/74، 27/51، 27/87 و 27/15
همچنین میزان طور که کمتر از نسبت به دیگر مدل ها به محور عمودی نزدیک تر است

که نشان از برتري این مدل در پیشبني میزان

در شکل 6 توزیع خطا استاندارد بر مبنای میزان
دو الگوریتم تقنیه ایکس نشان می دهد).

مطلق مدل SVM را نسبت به GEP نشان می دهد
می باشد.

میزان ابن شاخی در دوره آزمون برای مدل
SVM به ترتیب 27/56 و 27/73 به دست مدل
SVM که گویای برتري و عملکرد بسیار مناسب الگوریتم
می باشد.

Fig. 7 Standardized normal distribution graph of DDR values for SVM, GEP, Eq. 20 and Eqs. (5 and 6)
SVM شکل 7 نمودار توزیع نرمال استاندارد شده
برای DDR مدل های SVM و
معادله(5 و 6).

خلاصه میزان شاخشی از ارزابی پیش بینی ناشی از
گوریتهای تالیس هم از
معادله(7) و
معادله(6) در جدول 5 ارائه شده است.

جدول 5 خلاصه نتایج الگوریتم های
SVM و GEP
Table 5 Summery results of SVM and GEP algorithm for
labyrinth weir

<table>
<thead>
<tr>
<th>Model name</th>
<th>Phase</th>
<th>R^2</th>
<th>RE</th>
<th>RMSE</th>
<th>$Z_{DDR_{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>Train</td>
<td>0.9999</td>
<td>3.34</td>
<td>0.0081</td>
<td>66.496</td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td>0.9996</td>
<td>1.741</td>
<td>0.0104</td>
<td>45.267</td>
</tr>
<tr>
<td>GEP</td>
<td>Train</td>
<td>0.9986</td>
<td>4.42</td>
<td>0.2225</td>
<td>23.48</td>
</tr>
<tr>
<td></td>
<td>Test</td>
<td>0.9992</td>
<td>0.533</td>
<td>0.0157</td>
<td>19.73</td>
</tr>
</tbody>
</table>

همان طور که گفته شد برای مقایسه نتیجه های به دست
آمده از الگوریتم های هوشمند با مدل های رگرسیون
کلاسیک، با استفاده از نرم افزار SPSS مدل ها پرداخت
یافته با قرار مدل 20 استخراج G را کرده:

$$
R^2 = \ln \left(\frac{0.648[H_0]}{H_0} \right)^{3.09} + 0.0003 \left(\frac{H_0}{H_0} \right)^{1.0313} + 0.4098(\alpha^{0.9}) + 0.8079(\alpha^{0.916}) + 0.4061(C_d^{0.2639} + 1.2256)
$$

(20)
جدول ۷ ترکیب عملکرد برای سرریز خطي در الگوریتم GEP

<table>
<thead>
<tr>
<th>Number</th>
<th>Function</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F1</td>
<td>+,−,×,sin,cos,tan,power</td>
</tr>
<tr>
<td>2</td>
<td>F2</td>
<td>+,−,×,power,log,exp,sin,cos</td>
</tr>
<tr>
<td>3</td>
<td>F3</td>
<td>+,−,×,power,log,exp,sin,cos</td>
</tr>
<tr>
<td>4</td>
<td>F4</td>
<td>+,−,×,exp,power,Arctg</td>
</tr>
</tbody>
</table>

جدول ۸ میزان‌های فراستنجه‌ای مورد استفاده در براورد در سرریز خطي

<table>
<thead>
<tr>
<th>Parameters</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head size</td>
<td>8</td>
</tr>
<tr>
<td>Chromosomes numbers</td>
<td>30</td>
</tr>
<tr>
<td>Number of genes</td>
<td>4</td>
</tr>
<tr>
<td>Mutation rate</td>
<td>0.044</td>
</tr>
<tr>
<td>Inversion rate</td>
<td>0.1</td>
</tr>
<tr>
<td>One-point recombination rate</td>
<td>0.3</td>
</tr>
<tr>
<td>Two-point recombination rate</td>
<td>0.3</td>
</tr>
<tr>
<td>Gene recombination rate</td>
<td>0.1</td>
</tr>
<tr>
<td>Gene transposition rate</td>
<td>0.1</td>
</tr>
<tr>
<td>IS transposition rate</td>
<td>0.1</td>
</tr>
<tr>
<td>RIS transposition rate</td>
<td>0.1</td>
</tr>
<tr>
<td>Fitness function error type</td>
<td>RMSE</td>
</tr>
<tr>
<td>Linking function</td>
<td>+</td>
</tr>
</tbody>
</table>

معادله ۸ به قرار معادله ۲۱ است:

\[
\frac{H^*}{H_0} = [0.0044 + 0.048 \frac{H_d}{H_0}] + \exp(\arctan\frac{H_d}{H_0} - (\frac{H_d}{H_0} + F_{r1} + (F_{r1} - \frac{H_d}{H_0})) + \frac{H_d}{H_0}) \tag{21}
\]

شاخص (۹/۶۷۷۵۴) با میزان ZDR(max) سیگنال‌های منبت‌هایی متصل کننده مدل‌های Tullis et al. (2007) در شکل ۸ داده‌های مشاهده‌ای در برای داده‌های محاسباتی توسط مدل‌های SVM، GEP درصد رسم شده است. مدل‌های S- زامگاری مناسبی ری سیستم به معادله ۲۰ دارد. با استفاده از داده‌های آزمایشگاهی و به کمک مدل‌های GEP سازگاری مناسبی در سطح اطمینان ۹۵ درصد بررسی کنگره ای در جدول ۶ صفحه دنی-یا برای شرایط مستغرق سرریز کنگره‌ای در شکل ۹ رسم شده است.

![شکل ۸] مساحت میزان Hبرای سرریز خطي در مدل‌های SVM و GEP در سطح اطمینان ۹۵ درصد بررسی کنگره ای

![شکل ۹] مشاهده ۴۵ درصد سرریز خطي در مدل‌های SVM و GEP در شکل ۹ در رابطه با میزان Hبرای سرریز خطي در مدل‌های SVM و GEP در سطح اطمینان ۹۵ درصد بررسی کنگره ای.

Journal of Hydraulics 15 (2), 2020
کاربرد الگوریتم‌های هوشمند برای مدل‌سازی...
3-2- تجزیه و تحلیل حساسیت

انجام تجربه و تحلیل حساسیت در سریسمت های کندگری و خطی با حذف مرحله‌ای از یک از فراستنده‌های مستقل موجود در ترکیب نهایی آنان و تعبیه میزان تغییر ذبیحی های شاخه‌های ارزیابی انجام شد. بهینه‌ترین ترکیب در الگوریتم برای سریسمت کندگری مستغرق SVM به‌کارگیری $\frac{H_o}{H} - \frac{H_o}{h_o}$ با $\frac{H_o}{H}$ در جدول 11 راهه شده است. مقایسه مربوط به حذف Fr_1 در جدول 11 نشان داده شد که در تغییر در بین میزان شاخه‌های ارزیابی پیش و پس از حذف Fr_1 شکل 14 نشان داده است. نتایج در سریسمت Fr_1 بیشترین تأثیر را در ارائه داد.

جدول 11 تجزیه و تحلیل حساسیت سریسمت کندگری مستغرق Fr_1 با حذف

<table>
<thead>
<tr>
<th>Model name</th>
<th>Phase</th>
<th>R^2</th>
<th>RE</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>Train</td>
<td>0.5248</td>
<td>10.25</td>
<td>0.5897</td>
</tr>
<tr>
<td>SVM</td>
<td>Test</td>
<td>0.5472</td>
<td>9.875</td>
<td>0.6054</td>
</tr>
</tbody>
</table>

Fig. 14 Sensitivity analysis of submerged labyrinth weir

فراستنده‌ای مستقل مورد استفاده در الگوریتم برای سریسمت خطی به نمایی شمل $\frac{H_o}{h_o}$ و Fr_1 با میزان شاخه‌های ارزیابی اثرات حذف در جدول 9 بودند. از آنین دو فراستنده، بیشترین کاهش در میزان شاخه‌های ارزیابی برای جدول 12 با حذف $\frac{H_o}{h_o}$ مشاهده شد. در شکل 15 میزان شاخه‌های ارزیابی پیش و پس از حذف $\frac{H_o}{h_o}$ در الگوریتم SVM نشان داده شده است.

Fig. 13 Measured-Predicted values of $\frac{H^*}{H_0}$ in confidence level 95 percent for linear weir

شکل 13 داده‌های مساوی ای سریسمت $\frac{H^*}{H_0}$ در سطح اطمینان 95 درصد سریسمت خطی
5- فهرست نشان‌ها

- بار کل جریان مستقر، (m) مستقل، بیشترین کاهش در میزان شاخص‌های ارزیابی به دست آمد.

<table>
<thead>
<tr>
<th>Table 12</th>
<th>Sensitivity analysis of linear submerged weir with $\frac{H_a}{H_o}$ dropping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model name</td>
<td>Phase</td>
</tr>
<tr>
<td>SVM</td>
<td>Train</td>
</tr>
<tr>
<td></td>
<td>Test</td>
</tr>
</tbody>
</table>

Fig. 15 Sensitivity analysis results of submerged linear weir

- شکل 15 تجزیه و تحلیل حساسیت سرریز خش مستقر

4- نتیجه‌گیری

در این پژوهش، افزایش دقت پیش‌بینی رابطه دی-اشل برای سرریزهای کنگره و خلیفی مستقر با استفاده از مدل‌های هوشمند SVM و برپری بادهای GEP و در زمینه‌های DRA و R^2, RE, RMSE کاهش بهتری نسبت به الگوریتم DRA، فراسته‌های سرریزهای مورد استفاده GEP در مدل و R^2, RE و چهار شاخص جریان SVM و در زمینه‌های DRA با بازار بیشترین میزان $\frac{H_a}{H_o}$ به عنوان مدل برتر باید به عنوان بهترین شاخص‌های ارزیابی به عنوان مدل برتر باید به عنوان بهترین RDF و R^2, RE, RMSE به عنوان مدل برتر باید به عنوان بهترین RDF و R^2, RE, RMSE

- منبع‌ها

Fteley, A. and Stearns, F. P. (1883). Description of some experiments on flow of water made during the construction of works for conveying water of Sudbury River to Boston. Transactions of the American Society of Civil Engineers, ASCE, 12, 101-108.

