Azarboni, H. R., Keyanpour, M. and Yaghouti, M. (2019). Leave-Two-Out Cross Validation to optimal shape parameter in radial basis functions. Engineering Analysis with Boundary Elements, 100, 204-210.
Biazar, J. and Hosami, M. (2016). Selection of an interval for variable shape parameter in approximation by radial basis functions. Advances in Numerical Analysis, 2016.
Chang, T. J., Kao, H. M., Chang, K. H. and Hsu, M. H. (2011). Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics. Journal of Hydrology, 408(1-2), 78-90.
Chen, R. and Wu, Z. (2006). Applying multiquadric quasi-interpolation to solve Burgers’ equation. Applied mathematics and computation, 172(1), 472-484.
Chen, W., Hong, Y. and Lin, J. (2018). The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method. Computers & Mathematics with Applications, 75(8), 2942-2954.
Fallah, A., Jabbari, E. and Babaee, R. (2019). Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization. Computers & Mathematics with Applications, 77(3), 815-829.
Fasshauer, G. E. (2002). Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers & Mathematics with Applications, 43(3-5), 423-438.
Fennema, R. J. and Chaudhry, M. H. (1986). Explicit numerical schemes for unsteady free‐surface flows with shocks. Water Resources Research, 22(13), 1923-1930.
Franke, R. (1979). A critical comparison of some methods for interpolation of scattered data (No. NPS53-79-003). NAVAL POSTGRADUATE SCHOOL MONTEREY CA.
Golbabai, A., Mohebianfar, E. and Rabiei, H. (2015). On the new variable shape parameter strategies for radial basis functions. Computational and Applied Mathematics, 34(2), 691-704.
Gottardi, G. and Venutelli, M. (2004). Central scheme for two-dimensional dam-break flow simulation. Advances in Water Resources, 27(3), 259-268.
Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces. Journal of geophysical research, 76(8), 1905-1915.
Huang, C. S., Yen, H. D. and Cheng, A. D. (2010). On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs. Engineering Analysis with Boundary Elements, 34(9), 802-809.
Hon, Y. C. and Mao, X. Z. (1998). An efficient numerical scheme for Burgers' equation. Applied Mathematics and Computation, 95(1), 37-50.
Kansa, E. J. (1990). Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & mathematics with applications, 19(8-9), 147-161.
Kansa, E. J. and Carlson, R. E. (1992). Improved accuracy of multiquadric interpolation using variable shape parameters. Computers & Mathematics with Applications, 24(12), 99-120.
Kansa, E. J. and Geiser, J. (2013). Numerical solution to time-dependent 4D inviscid Burgers' equations. Engineering Analysis with Boundary Elements, 37(3), 637-645.
Koushki, M., Babaee, R. and Jabbari, E. (2019). Application of RBF Multiquadric method for solving seepage problems using a new algorithm for optimization of the shape parameter. Amirkabir Journal of Civil Engineering, Accepted for publication.
Muzik, J. and Holickova, M. (2017). Meshless simulation of dam break using MLPG-RBF and shallow water equations. In MATEC Web of Conferences (Vol. 117, p. 00127). EDP Sciences.
Patel, S. and Rastogi, A. K. (2017). Meshfree multiquadric solution for real field large heterogeneous aquifer system. Water Resources Management, 31(9), 2869-2884.
Ritter, A. (1892). Die fortpflanzung der wasserwellen. Zeitschrift des Vereines Deutscher Ingenieure, 36(33), 947-954.
Rippa, S. (1999). An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Advances in Computational Mathematics, 11(2-3), 193-210.
Sun, C. P., Young, D. L., Shen, L. H., Chen, T. F. and Hsian, C. C. (2013). Application of localized meshless methods to 2D shallow water equation problems. Engineering Analysis with Boundary Elements, 37(11), 1339-1350.
Tatari, M. and Dehghan, M. (2009). On the solution of the non-local parabolic partial differential equations via radial basis functions. Applied Mathematical Modelling, 33(3), 1729-1738.
Wong, A. S. M., Hon, Y. C., Li, T. S., Chung, S. L. and Kansa, E. J. (1999). Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme. Computers & Mathematics with Applications, 37(8), 23-43.
Wong, S. M., Hon, Y. C. and Li, T. S. (2002). A meshless multilayer model for a coastal system by radial basis functions. Computers & Mathematics with Applications, 43(3-5), 585-605.
Yaghouti, M. and Ramezannezhad Azarboni, H. (2017). Determining optimal value of the shape parameter $ c $ in RBF for unequal distances topographical points by Cross-Validation algorithm. Journal of Mathematical Modeling, 5(1), 53-60.
Yekta, A. H. A. and Banihashemi, M. A. (2011). A Godunov‐type fractional semi‐implicit method based on staggered grid for dam‐break modeling. International Journal for Numerical Methods in Fluids, 67(10), 1291-1309.