طراحی اقتصادی شبکه‌های آب‌رسانی با استفاده از عملگر مفهومی ‌آستانه پویا در الگوریتم ژنتیک (GA-DTO)

نوع مقاله : مقاله کامل (پژوهشی)

نویسنده

استادیار ‌گروه عمران، دانشکده مهندسی، دانشگاه شهید چمران اهواز

چکیده

تحقیق حاضر به توسعه یک روش بهینه‌سازی فراکاوشی بر پایه مفهوم آستانه پویا برای طراحی شبکه‌های آب‌رسانی می‌پردازد. نخست مدل برنامه‌ریزی مسأله شامل تعریف تابع هزینه، قیود و اتصال مدل شبیه‌سازی هیدرولیکی به الگوریتم بهینه‌سازی توسعه داده می‌شود. سپس از یک ساختار بسیار ساده الگوریتم ژنتیک باینری برای حل مسأله کمک گرفته شده که در آن از مفهوم آستانه پویا به عنوان یکی از عملگرهای بهینه‌سازی بهره گرفته می‌شود. توسط این عملگر در فرایند بهینه‌سازی، فضای تصمیم‌گیری مسأله بصورت تدریجی و منطبق با تاریخچه جستجو فشرده و کوچک می‌شود و به این ترتیب شانس رسیدن به پاسخ بهینه مطلق در آستانه‌های مختلف افزایش می‌یابد. قابلیت روش با حل دو مثال مرجع مورد ارزیابی قرار گرفته است. نتایج نشان می‌دهند که الگوریتم پیشنهادی سبب افزایش کارایی فرایند جستجو و امید دست‌یابی به پاسخ بهینه مطلق در مسأله طراحی شبکه‌های آب‌رسانی می‌شود.

کلیدواژه‌ها


Afshar M. H. and Marino M. A. (2005). A convergent genetic algorithm for pipe network optimization, Scientia Iranica, 12(4), pp. 392-401.
Alperovits E. and Shamir U. (1977). Design of optimal water distribution systems, Water Resour. Res., 13(6), pp. 885–900.
Bhave P. and Sonak V. (1992). A critical study of the linear programming gradient method for optimal design of water supply networks, Water Resour. Res., 28(6), pp. 1577-1584.
Chiplunkar A., Mehandiratta V. and Khanna S.L. (1986). Looped water distribution system optimization for single loading, J. Environ. Eng., ASCE 112(2), pp. 264-279.
Cisty M. (2010). Hybrid genetic algorithm and linear programming method for least-cost design of water distribution systems, Water Resour. Manage., 24, pp. 1-24.
Cunha M.C. and Sousa J. (1999). Water distribution network design optimization: simulated annealing approach, J. Water Resour. Plan. Manage., 125(4), pp. 215-221.
Dantzig G.B. (1963). Linear programming and extensions, Princeton Univ. Press, New Jersey.
Eusuff M.M. and Lansey K.E. (2003). Optimization of water distribution network design using the Shuffled frog leaping algorithm, J. Water Resour. Plan. Manage., 129(3), pp. 210-225.
Formato R.A. (2012). Dynamic Threshold Optimization-A New Approach? Cornell University Libarary, Techincal report.
Fujiwara O. and Khang D.B. (1990). A two-phase decomposition method for optimal design of looped water distribution networks, Water Resour. Res., 26(4), pp. 539-549.
Geem Z.W., Kim J.H. and Loganathan G.V. (2002). Harmony search optimization: Application to pipe network design, Int. J. Model. Simul., 22(2), pp. 125-133.
Gupta I. (1969). Linear programming analysis of a water system, Trans. Amer. Inst. Ind. Eng., I(1), pp. 56-61
Gupta I. and Hassan M.Z. (1972). Linear programming analysis of a water supply system with a multiple supply points, Trans. Amer. Inst. Ind. Eng. 4(3), pp. 200-204.
Haghighi A., Samani H.M.V. and Samani Z.M.V. (2011). GA-ILP method for optimization of water distribution networks, J. Water Resour. Manage., 25, pp. 1791–1808.
Haupt R.L. and Haupt S.E. (2004). Practical genetic algorithms, second edition, John Wiley & Sons Inc. Hoboken, New Jersey.
Kadu M.S., Gupta R. and Bhave P.R. (2008). Optimal design of water networks using a modified genetic algorithm with reduction in search space, J. Water Resour. Plan. Manage., 134(2). pp. 147-160.
Kessler A. and Shamir U. (1989). Analysis of the linear programming gradient method for optimal design of water supply networks, Water Resour. Res., 25(7), pp. 1469-1480.
Krapivka, A. and Ostfeld, A. (2009). Coupled genetic algorithm—linear programming scheme for least-cost pipe sizing of water-distribution systems, J. Water Resour. Plann. Manage., 135, SPECIAL ISSUE: Water Infrastructure: Remembering the Contributions and Influence of G. V. Loganathan, pp. 298–302.
Lansey K. E. and Mays. L. W. (1989). Optimization models for design of water distribution systems. Reliability analysis of water distribution systems, L. W. Mays, ed., ASCE. New York. N.Y.
Liong S.Y. and Atiquzzman M.D. (2004). Optimal design of water distribution network using Shuffled complex evolution, J. lnistitution Eng. Singapore, 44(1) pp. 93-107.
Lippai I., Heaney J.P. and Laguna M. (1999). Robust water system design with commercial intelligent search optimizers, J. Comput. Civ. Eng., 13(3), pp. 135-143.
Maier H.R., Simpson A.R., Zecchin A.C. Foong W.K., Phang K.Y., Seah H.Y. and Tan C.L. (2003). Ant colony optimization for design of water distribution systems, J. Water Resour. Plan. Manage., 129(3), pp. 200-209.
Morgan D.R. and Goulter I.C. (1985). Optimal urban water distribution design, Water Resour. Research, 21(5), pp.642-652.
Prasad T.D. and Park N.S. (2004). Multiobjective genetic algorithms for design of water distribution networks, J. Water Resour. Plan. Manage., 130(1), pp. 73-82.
Quindry G.E., Brill E.D. and Liebman J.C. (1981). Optimization of looped water distribution systems, J. Environ. Eng., ASCE 107(4), pp. 665-679.
Reca J., Martínez J., Gil C. and Baños R. (2008). Application of several meta-heuristic techniques to the optimization of real looped water distribution networks, J. Water Resour. Manage., 22, pp. 1367-1379.
Samani H.M.V. and Mottaghi A. (2006). Optimization of water distribution networks using integer linear programming, J. Hyd. Eng., 132(5), pp. 501-509.
Samani H.M.V. and Naeeni S.T. (1996). Optimization of water distribution networks, J. Hyd. Res., 34(5), pp. 623-632.
Samani H.M.V. and Zangeneh A. (2010). Optimization of water Networks using linear programming. J. Water Manage., Proceedings of the Institution of Civil Engineers, WM8, pp. 475-485.
Savic D.A. and Walters G.A. (1997). Genetic algorithms for least cost design of water distribution networks, J. Water Resour. Plan. Manage., 123(2), pp. 67-77.
Simpson A.R., Dandy G.C. and Murphy L.J. (1994). Genetic algorithms compared to other techniques for pipe optimization, J. Water Resour. Plan. Manage., 120(4), pp. 423-443.
Suribabu C. R. and Neelakantan, T. R. (2006). Particle swarm optimization compared to other
heuristic search techniques for pipe sizing, Journal of Environmental Informatics, 8(1), pp. 1-9.
Taher S.A. and Labadie J.W. (1996). Optimal design of water-distribution networks with GIS, J. Water Resour. Plan. Manage., 122(4), pp. 301-311.
Tospornsampan, J., Kita, I., Ishii, M. and Kitamura, Y. (2007). Split-pipe design of water distribution network using simulated annealing. International Journal of Computer, Information & Systems Science, 1(3), pp. 153-160. 
Vairavamoorthy K. and Ali M. (2000). Optimal design of water distribution systems using genetic algorithms, Comput-Aided Civil Infrastruct. Eng., 15(5), pp. 374–382.
Vairavamoorthy K. and Ali M. (2005). Pipe index vector: A method to improve genetic-algorithm-based pipe optimization, J. Hyd. Eng., 131(12), pp. 1117-1127.
Vasan, A. and Simonovic S.P. (2010). Optimization of water distribution network design using differential evolution, J. Water Resour. Plan. Manage., 136(2), pp. 279-287.
Walski T. (1987). Battle of the network models; epilogue, J. Water Resour. Plan. Manage., 113(2), pp. 191-203.
Watanatada T. (1973). Least cost design of water distribution systems, J. Hyd. Eng., 99(9), pp. 1497-1513.
Wu Z.Y. and Walski T. (2005). Self-adaptive penalty approach compared with other constraint-handling techniques for pipe line optimization, J. Water Resour. Plan. Manage., 131(3), pp. 181-192.
Zecchin A. C., Simpson A. R., Maier H. R. and Nixon J. B. (2005). Parametric study for an ant algorithm applied to water distribution system optimization, IEEE Trans. Evol. Comput., 9(2), pp. 175–191.
Zecchin A. C., Maier H. R., Simpson A. R., Leonard M., Roberts A. J. and Berrisford M. J. (2006). Application of two ant colony optimisation algorithms to water distribution system optimization, Math. Comput. Model, 44, pp. 451–468.